YES Termination w.r.t. Q proof of SK90_2.29.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Combined order from the following AFS and order.
prime(x1)  =  prime(x1)
0  =  0
false  =  false
s(x1)  =  s(x1)
prime1(x1, x2)  =  prime1(x1, x2)
true  =  true
and(x1, x2)  =  and(x1, x2)
not(x1)  =  x1
divp(x1, x2)  =  divp(x1, x2)
=(x1, x2)  =  =(x1, x2)
rem(x1, x2)  =  rem(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
prime1 > prime12 > false > [and2, =2, rem2]
prime1 > prime12 > s1 > [and2, =2, rem2]
prime1 > prime12 > true > [and2, =2, rem2]
prime1 > prime12 > divp2 > 0 > [and2, =2, rem2]

Status:
prime1: multiset
0: multiset
false: multiset
s1: multiset
prime12: [1,2]
true: multiset
and2: [1,2]
divp2: [2,1]
=2: multiset
rem2: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

prime(0) → false
prime(s(0)) → false
prime(s(s(x))) → prime1(s(s(x)), s(x))
prime1(x, 0) → false
prime1(x, s(0)) → true
prime1(x, s(s(y))) → and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) → =(rem(x, y), 0)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES