YES Termination w.r.t. Q proof of Rubio_04_wst99.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

din(der(plus(X, Y))) → u21(din(der(X)), X, Y)
u21(dout(DX), X, Y) → u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX) → dout(plus(DX, DY))
din(der(times(X, Y))) → u31(din(der(X)), X, Y)
u31(dout(DX), X, Y) → u32(din(der(Y)), X, Y, DX)
u32(dout(DY), X, Y, DX) → dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X))) → u41(din(der(X)), X)
u41(dout(DX), X) → u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX) → dout(DDX)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

din(der(plus(X, Y))) → u21(din(der(X)), X, Y)
u21(dout(DX), X, Y) → u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX) → dout(plus(DX, DY))
din(der(times(X, Y))) → u31(din(der(X)), X, Y)
u31(dout(DX), X, Y) → u32(din(der(Y)), X, Y, DX)
u32(dout(DY), X, Y, DX) → dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X))) → u41(din(der(X)), X)
u41(dout(DX), X) → u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX) → dout(DDX)

The set Q consists of the following terms:

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIN(der(plus(X, Y))) → U21(din(der(X)), X, Y)
DIN(der(plus(X, Y))) → DIN(der(X))
U21(dout(DX), X, Y) → U22(din(der(Y)), X, Y, DX)
U21(dout(DX), X, Y) → DIN(der(Y))
DIN(der(times(X, Y))) → U31(din(der(X)), X, Y)
DIN(der(times(X, Y))) → DIN(der(X))
U31(dout(DX), X, Y) → U32(din(der(Y)), X, Y, DX)
U31(dout(DX), X, Y) → DIN(der(Y))
DIN(der(der(X))) → U41(din(der(X)), X)
DIN(der(der(X))) → DIN(der(X))
U41(dout(DX), X) → U42(din(der(DX)), X, DX)
U41(dout(DX), X) → DIN(der(DX))

The TRS R consists of the following rules:

din(der(plus(X, Y))) → u21(din(der(X)), X, Y)
u21(dout(DX), X, Y) → u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX) → dout(plus(DX, DY))
din(der(times(X, Y))) → u31(din(der(X)), X, Y)
u31(dout(DX), X, Y) → u32(din(der(Y)), X, Y, DX)
u32(dout(DY), X, Y, DX) → dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X))) → u41(din(der(X)), X)
u41(dout(DX), X) → u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX) → dout(DDX)

The set Q consists of the following terms:

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U21(dout(DX), X, Y) → DIN(der(Y))
DIN(der(plus(X, Y))) → U21(din(der(X)), X, Y)
DIN(der(plus(X, Y))) → DIN(der(X))
DIN(der(times(X, Y))) → U31(din(der(X)), X, Y)
U31(dout(DX), X, Y) → DIN(der(Y))
DIN(der(times(X, Y))) → DIN(der(X))
DIN(der(der(X))) → U41(din(der(X)), X)
U41(dout(DX), X) → DIN(der(DX))
DIN(der(der(X))) → DIN(der(X))

The TRS R consists of the following rules:

din(der(plus(X, Y))) → u21(din(der(X)), X, Y)
u21(dout(DX), X, Y) → u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX) → dout(plus(DX, DY))
din(der(times(X, Y))) → u31(din(der(X)), X, Y)
u31(dout(DX), X, Y) → u32(din(der(Y)), X, Y, DX)
u32(dout(DY), X, Y, DX) → dout(plus(times(X, DY), times(Y, DX)))
din(der(der(X))) → u41(din(der(X)), X)
u41(dout(DX), X) → u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX) → dout(DDX)

The set Q consists of the following terms:

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(7) QDPQMonotonicMRRProof (EQUIVALENT transformation)

By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.
Strictly oriented dependency pairs:

U21(dout(DX), X, Y) → DIN(der(Y))
DIN(der(plus(X, Y))) → U21(din(der(X)), X, Y)
DIN(der(times(X, Y))) → U31(din(der(X)), X, Y)
U31(dout(DX), X, Y) → DIN(der(Y))
DIN(der(der(X))) → U41(din(der(X)), X)

Strictly oriented rules of the TRS R:

u21(dout(DX), X, Y) → u22(din(der(Y)), X, Y, DX)
u22(dout(DY), X, Y, DX) → dout(plus(DX, DY))
u31(dout(DX), X, Y) → u32(din(der(Y)), X, Y, DX)
u32(dout(DY), X, Y, DX) → dout(plus(times(X, DY), times(Y, DX)))
u41(dout(DX), X) → u42(din(der(DX)), X, DX)
u42(dout(DDX), X, DX) → dout(DDX)

Used ordering: Polynomial interpretation [POLO]:

POL(DIN(x1)) = 2   
POL(U21(x1, x2, x3)) = 2·x1   
POL(U31(x1, x2, x3)) = 2·x1   
POL(U41(x1, x2)) = x1   
POL(der(x1)) = 2·x1   
POL(din(x1)) = 0   
POL(dout(x1)) = 2 + 2·x1   
POL(plus(x1, x2)) = 0   
POL(times(x1, x2)) = x1   
POL(u21(x1, x2, x3)) = x1   
POL(u22(x1, x2, x3, x4)) = 2·x1 + 2·x4   
POL(u31(x1, x2, x3)) = x1   
POL(u32(x1, x2, x3, x4)) = 2·x1   
POL(u41(x1, x2)) = x1   
POL(u42(x1, x2, x3)) = 2·x1   

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIN(der(plus(X, Y))) → DIN(der(X))
DIN(der(times(X, Y))) → DIN(der(X))
U41(dout(DX), X) → DIN(der(DX))
DIN(der(der(X))) → DIN(der(X))

The TRS R consists of the following rules:

din(der(plus(X, Y))) → u21(din(der(X)), X, Y)
din(der(times(X, Y))) → u31(din(der(X)), X, Y)
din(der(der(X))) → u41(din(der(X)), X)

The set Q consists of the following terms:

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIN(der(times(X, Y))) → DIN(der(X))
DIN(der(plus(X, Y))) → DIN(der(X))
DIN(der(der(X))) → DIN(der(X))

The TRS R consists of the following rules:

din(der(plus(X, Y))) → u21(din(der(X)), X, Y)
din(der(times(X, Y))) → u31(din(der(X)), X, Y)
din(der(der(X))) → u41(din(der(X)), X)

The set Q consists of the following terms:

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIN(der(times(X, Y))) → DIN(der(X))
DIN(der(plus(X, Y))) → DIN(der(X))
DIN(der(der(X))) → DIN(der(X))

R is empty.
The set Q consists of the following terms:

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

(13) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

din(der(plus(x0, x1)))
u21(dout(x0), x1, x2)
u22(dout(x0), x1, x2, x3)
din(der(times(x0, x1)))
u31(dout(x0), x1, x2)
u32(dout(x0), x1, x2, x3)
din(der(der(x0)))
u41(dout(x0), x1)
u42(dout(x0), x1, x2)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIN(der(times(X, Y))) → DIN(der(X))
DIN(der(plus(X, Y))) → DIN(der(X))
DIN(der(der(X))) → DIN(der(X))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

DIN(der(times(X, Y))) → DIN(der(X))
DIN(der(plus(X, Y))) → DIN(der(X))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(DIN(x1)) = 2·x1   
POL(der(x1)) = x1   
POL(plus(x1, x2)) = 2·x1 + x2   
POL(times(x1, x2)) = 2·x1 + x2   

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIN(der(der(X))) → DIN(der(X))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIN(der(der(X))) → DIN(der(X))
    The graph contains the following edges 1 > 1

(18) YES