(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
APP(cons(N, L), Y) → APP(L, Y)
LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
LOW(N, cons(M, L)) → LE(M, N)
IFLOW(true, N, cons(M, L)) → LOW(N, L)
IFLOW(false, N, cons(M, L)) → LOW(N, L)
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
HIGH(N, cons(M, L)) → LE(M, N)
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
QUICKSORT(cons(N, L)) → APP(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
QUICKSORT(cons(N, L)) → LOW(N, L)
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) → HIGH(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(cons(N, L), Y) → APP(L, Y)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(cons(N, L), Y) → APP(L, Y)
R is empty.
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(cons(N, L), Y) → APP(L, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP(cons(N, L), Y) → APP(L, Y)
The graph contains the following edges 1 > 1, 2 >= 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
R is empty.
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(X), s(Y)) → LE(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- HIGH(N, cons(M, L)) → IFHIGH(le(M, N), N, cons(M, L))
The graph contains the following edges 1 >= 2, 2 >= 3
- IFHIGH(true, N, cons(M, L)) → HIGH(N, L)
The graph contains the following edges 2 >= 1, 3 > 2
- IFHIGH(false, N, cons(M, L)) → HIGH(N, L)
The graph contains the following edges 2 >= 1, 3 > 2
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
IFLOW(true, N, cons(M, L)) → LOW(N, L)
IFLOW(false, N, cons(M, L)) → LOW(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
IFLOW(true, N, cons(M, L)) → LOW(N, L)
IFLOW(false, N, cons(M, L)) → LOW(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
IFLOW(true, N, cons(M, L)) → LOW(N, L)
IFLOW(false, N, cons(M, L)) → LOW(N, L)
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LOW(N, cons(M, L)) → IFLOW(le(M, N), N, cons(M, L))
The graph contains the following edges 1 >= 2, 2 >= 3
- IFLOW(true, N, cons(M, L)) → LOW(N, L)
The graph contains the following edges 2 >= 1, 3 > 2
- IFLOW(false, N, cons(M, L)) → LOW(N, L)
The graph contains the following edges 2 >= 1, 3 > 2
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
The TRS R consists of the following rules:
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
app(nil, Y) → Y
app(cons(N, L), Y) → cons(N, app(L, Y))
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
iflow(false, N, cons(M, L)) → low(N, L)
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
quicksort(nil) → nil
quicksort(cons(N, L)) → app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
The TRS R consists of the following rules:
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(false, N, cons(M, L)) → low(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(cons(x0, x1), x2)
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
quicksort(nil)
quicksort(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
app(nil, x0)
app(cons(x0, x1), x2)
quicksort(nil)
quicksort(cons(x0, x1))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
The TRS R consists of the following rules:
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(false, N, cons(M, L)) → low(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(40) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUICKSORT(cons(N, L)) → QUICKSORT(low(N, L))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( QUICKSORT(x1) ) = max{0, 2x1 - 1} |
POL( high(x1, x2) ) = x2 + 2 |
POL( cons(x1, x2) ) = x2 + 2 |
POL( ifhigh(x1, ..., x3) ) = x3 + 2 |
POL( iflow(x1, ..., x3) ) = max{0, 2x1 + x3 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(false, N, cons(M, L)) → low(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
The TRS R consists of the following rules:
low(N, nil) → nil
low(N, cons(M, L)) → iflow(le(M, N), N, cons(M, L))
iflow(false, N, cons(M, L)) → low(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
iflow(true, N, cons(M, L)) → cons(M, low(N, L))
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(42) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
The TRS R consists of the following rules:
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(44) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
low(x0, nil)
low(x0, cons(x1, x2))
iflow(true, x0, cons(x1, x2))
iflow(false, x0, cons(x1, x2))
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
The TRS R consists of the following rules:
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(46) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUICKSORT(cons(N, L)) → QUICKSORT(high(N, L))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUICKSORT(
x1) =
x1
cons(
x1,
x2) =
cons(
x2)
high(
x1,
x2) =
x2
nil =
nil
ifhigh(
x1,
x2,
x3) =
x3
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
cons_1=1
nil=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
(47) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
high(N, nil) → nil
high(N, cons(M, L)) → ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) → high(N, L)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
ifhigh(false, N, cons(M, L)) → cons(M, high(N, L))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
high(x0, nil)
high(x0, cons(x1, x2))
ifhigh(true, x0, cons(x1, x2))
ifhigh(false, x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(48) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(49) YES