(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(X, s(Y)) → PRED(minus(X, Y))
MINUS(X, s(Y)) → MINUS(X, Y)
LE(s(X), s(Y)) → LE(X, Y)
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
GCD(s(X), s(Y)) → LE(Y, X)
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
IF(true, s(X), s(Y)) → MINUS(X, Y)
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
IF(false, s(X), s(Y)) → MINUS(Y, X)
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
R is empty.
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(X), s(Y)) → LE(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(X), s(Y)) → LE(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(X, s(Y)) → MINUS(X, Y)
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(X, s(Y)) → MINUS(X, Y)
R is empty.
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(X, s(Y)) → MINUS(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS(X, s(Y)) → MINUS(X, Y)
The graph contains the following edges 1 >= 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
gcd(0, Y) → 0
gcd(s(X), 0) → s(X)
gcd(s(X), s(Y)) → if(le(Y, X), s(X), s(Y))
if(true, s(X), s(Y)) → gcd(minus(X, Y), s(Y))
if(false, s(X), s(Y)) → gcd(minus(Y, X), s(X))
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if(true, s(x0), s(x1))
if(false, s(x0), s(x1))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
We have to consider all minimal (P,Q,R)-chains.
(26) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(true, s(X), s(Y)) → GCD(minus(X, Y), s(Y))
IF(false, s(X), s(Y)) → GCD(minus(Y, X), s(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( GCD(x1, x2) ) = max{0, 2x1 + x2 - 2} |
POL( minus(x1, x2) ) = x1 + 1 |
POL( pred(x1) ) = max{0, x1 - 2} |
POL( IF(x1, ..., x3) ) = max{0, x1 + 2x2 + x3 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
pred(s(X)) → X
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(X), s(Y)) → IF(le(Y, X), s(X), s(Y))
The TRS R consists of the following rules:
minus(X, s(Y)) → pred(minus(X, Y))
minus(X, 0) → X
pred(s(X)) → X
le(s(X), s(Y)) → le(X, Y)
le(s(X), 0) → false
le(0, Y) → true
The set Q consists of the following terms:
minus(x0, s(x1))
minus(x0, 0)
pred(s(x0))
le(s(x0), s(x1))
le(s(x0), 0)
le(0, x0)
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE