(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(X), s(Y)) → LT(X, Y)
APPEND(add(N, X), Y) → APPEND(X, Y)
SPLIT(N, add(M, Y)) → F_1(split(N, Y), N, M, Y)
SPLIT(N, add(M, Y)) → SPLIT(N, Y)
F_1(pair(X, Z), N, M, Y) → F_2(lt(N, M), N, M, Y, X, Z)
F_1(pair(X, Z), N, M, Y) → LT(N, M)
QSORT(add(N, X)) → F_3(split(N, X), N, X)
QSORT(add(N, X)) → SPLIT(N, X)
F_3(pair(Y, Z), N, X) → APPEND(qsort(Y), add(X, qsort(Z)))
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(add(N, X), Y) → APPEND(X, Y)
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(add(N, X), Y) → APPEND(X, Y)
R is empty.
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(add(N, X), Y) → APPEND(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND(add(N, X), Y) → APPEND(X, Y)
The graph contains the following edges 1 > 1, 2 >= 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(X), s(Y)) → LT(X, Y)
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(X), s(Y)) → LT(X, Y)
R is empty.
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(X), s(Y)) → LT(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LT(s(X), s(Y)) → LT(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SPLIT(N, add(M, Y)) → SPLIT(N, Y)
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SPLIT(N, add(M, Y)) → SPLIT(N, Y)
R is empty.
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SPLIT(N, add(M, Y)) → SPLIT(N, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SPLIT(N, add(M, Y)) → SPLIT(N, Y)
The graph contains the following edges 1 >= 1, 2 > 2
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QSORT(add(N, X)) → F_3(split(N, X), N, X)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
The TRS R consists of the following rules:
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QSORT(add(N, X)) → F_3(split(N, X), N, X)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
The TRS R consists of the following rules:
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
append(nil, x0)
append(add(x0, x1), x2)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QSORT(add(N, X)) → F_3(split(N, X), N, X)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
The TRS R consists of the following rules:
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
We have to consider all minimal (P,Q,R)-chains.
(33) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QSORT(add(N, X)) → F_3(split(N, X), N, X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( F_3(x1, ..., x3) ) = x1 + 1 |
POL( split(x1, x2) ) = 2x2 |
POL( pair(x1, x2) ) = x1 + x2 |
POL( add(x1, x2) ) = 2x2 + 1 |
POL( f_1(x1, ..., x4) ) = 2x1 + 2 |
POL( f_2(x1, ..., x6) ) = 2x1 + 2x5 + 2x6 + 2 |
POL( QSORT(x1) ) = x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
The TRS R consists of the following rules:
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
The set Q consists of the following terms:
lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
We have to consider all minimal (P,Q,R)-chains.
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(36) TRUE