(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, z, s(s(s(s(s(s(s(y))))))), z) → f(x, 0, s(s(y)), z)
f(x, z, s(s(s(s(s(s(0)))))), z) → f(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is none
The TRS R 2 is
f(x, z, s(s(s(s(s(s(s(y))))))), z) → f(x, 0, s(s(y)), z)
f(x, z, s(s(s(s(s(s(0)))))), z) → f(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
The signature Sigma is {
f}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, z, s(s(s(s(s(s(s(y))))))), z) → f(x, 0, s(s(y)), z)
f(x, z, s(s(s(s(s(s(0)))))), z) → f(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
The set Q consists of the following terms:
f(x0, x1, s(s(s(s(s(s(s(x2))))))), x1)
f(x0, x1, s(s(s(s(s(s(0)))))), x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, z, s(s(s(s(s(s(s(y))))))), z) → F(x, 0, s(s(y)), z)
F(x, z, s(s(s(s(s(s(0)))))), z) → F(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
The TRS R consists of the following rules:
f(x, z, s(s(s(s(s(s(s(y))))))), z) → f(x, 0, s(s(y)), z)
f(x, z, s(s(s(s(s(s(0)))))), z) → f(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
The set Q consists of the following terms:
f(x0, x1, s(s(s(s(s(s(s(x2))))))), x1)
f(x0, x1, s(s(s(s(s(s(0)))))), x1)
We have to consider all minimal (P,Q,R)-chains.
(5) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, z, s(s(s(s(s(s(s(y))))))), z) → F(x, 0, s(s(y)), z)
F(x, z, s(s(s(s(s(s(0)))))), z) → F(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
R is empty.
The set Q consists of the following terms:
f(x0, x1, s(s(s(s(s(s(s(x2))))))), x1)
f(x0, x1, s(s(s(s(s(s(0)))))), x1)
We have to consider all minimal (P,Q,R)-chains.
(7) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
f(x0, x1, s(s(s(s(s(s(s(x2))))))), x1)
f(x0, x1, s(s(s(s(s(s(0)))))), x1)
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, z, s(s(s(s(s(s(s(y))))))), z) → F(x, 0, s(s(y)), z)
F(x, z, s(s(s(s(s(s(0)))))), z) → F(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
F(
x,
z,
s(
s(
s(
s(
s(
s(
s(
y))))))),
z) →
F(
x,
0,
s(
s(
y)),
z) we obtained the following new rules [LPAR04]:
F(z0, 0, s(s(s(s(s(s(s(x2))))))), 0) → F(z0, 0, s(s(x2)), 0) → F(z0, 0, s(s(s(s(s(s(s(x2))))))), 0) → F(z0, 0, s(s(x2)), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(z0))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(z0))), 0)
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, z, s(s(s(s(s(s(0)))))), z) → F(s(s(s(s(s(s(s(s(0)))))))), z, s(s(s(s(s(s(s(s(x)))))))), 0)
F(z0, 0, s(s(s(s(s(s(s(x2))))))), 0) → F(z0, 0, s(s(x2)), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(z0))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
F(
x,
z,
s(
s(
s(
s(
s(
s(
0)))))),
z) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
z,
s(
s(
s(
s(
s(
s(
s(
s(
x)))))))),
0) we obtained the following new rules [LPAR04]:
F(z0, 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0) → F(z0, 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(z0, 0, s(s(s(s(s(s(s(x2))))))), 0) → F(z0, 0, s(s(x2)), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(z0))), 0)
F(z0, 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
F(
z0,
0,
s(
s(
s(
s(
s(
s(
s(
x2))))))),
0) →
F(
z0,
0,
s(
s(
x2)),
0) we obtained the following new rules [LPAR04]:
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(y_1))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(y_1))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(0)))))), 0) → F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0)
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(z0))), 0)
F(z0, 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(y_1))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
z0)))))))),
0) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
z0))),
0) we obtained the following new rules [LPAR04]:
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_1))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_1))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(z0, 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(z0)))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(y_1))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_1))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
F(
z0,
0,
s(
s(
s(
s(
s(
s(
0)))))),
0) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
z0)))))))),
0) we obtained the following new rules [LPAR04]:
F(s(s(s(s(y_1)))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(s(s(s(s(y_1)))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(y_0))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(y_0))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(0))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(0))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
F(s(s(s(s(s(s(s(s(s(y_0))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(s(y_0))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))))))), 0)
F(s(s(s(s(s(s(s(s(s(s(y_0)))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(s(s(y_0)))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(y_1))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_1))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
F(s(s(s(s(y_1)))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(y_0))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(0))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
F(s(s(s(s(s(s(s(s(s(y_0))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))))))), 0)
F(s(s(s(s(s(s(s(s(s(s(y_0)))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
F(s(s(s(0))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(F(x1, x2, x3, x4)) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(s(y_1))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(y_0)))))))), 0)
F(x0, 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(x0, 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_1))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0)
F(s(s(s(s(y_1)))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(y_1)))))))))))), 0)
F(s(s(s(s(s(y_0))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))), 0)
F(s(s(s(s(s(s(s(s(s(y_0))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0))))))))))))))))), 0)
F(s(s(s(s(s(s(s(s(s(s(y_0)))))))))), 0, s(s(s(s(s(s(0)))))), 0) → F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(y_0)))))))))))))))))), 0)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))))))))))),
0) evaluates to t =
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))))))))))),
0)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceF(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))), 0) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0))))))))))),
0)
with rule
F(
x0,
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
y_1)))))))))))),
0) →
F(
x0,
0,
s(
s(
s(
s(
s(
s(
s(
y_1))))))),
0) at position [] and matcher [
x0 /
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
y_1 /
s(
s(
s(
s(
0))))]
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(s(s(s(s(s(0))))))))))), 0) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
0)))))),
0)
with rule
F(
x0,
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0))))))))))),
0) →
F(
x0,
0,
s(
s(
s(
s(
s(
s(
0)))))),
0) at position [] and matcher [
x0 /
s(
s(
s(
s(
s(
s(
s(
s(
0))))))))]
F(s(s(s(s(s(s(s(s(0)))))))), 0, s(s(s(s(s(s(0)))))), 0) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))))))))))),
0)
with rule
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
0)))))),
0) →
F(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))),
0,
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0)))))))))))))))),
0)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(22) NO