(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(cons(f(cons(nil, y)), z)) → COPY(n, y, z)
COPY(0, y, z) → F(z)
COPY(s(x), y, z) → COPY(x, y, cons(f(y), z))
COPY(s(x), y, z) → F(y)
The TRS R consists of the following rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
COPY(s(x), y, z) → COPY(x, y, cons(f(y), z))
The TRS R consists of the following rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- COPY(s(x), y, z) → COPY(x, y, cons(f(y), z))
The graph contains the following edges 1 > 1, 2 >= 2
(6) YES