(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(0)) → F(s(0))
G(x) → H(x, x)
S(x) → H(x, 0)
S(x) → H(0, x)
F(g(x)) → G(g(f(x)))
F(g(x)) → G(f(x))
F(g(x)) → F(x)
G(s(x)) → S(s(g(x)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
H(f(x), g(x)) → F(s(x))
H(f(x), g(x)) → S(x)
S(s(0)) → K(0)
S(s(s(0))) → K(s(0))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(s(s(0))))))
K(s(s(0))) → S(s(s(s(s(0)))))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
H(k(x), g(x)) → K(s(x))
H(k(x), g(x)) → S(x)
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(x)) → G(g(f(x)))
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(f(x))
G(s(x)) → S(s(g(x)))
S(s(0)) → F(s(0))
F(g(x)) → F(x)
S(s(s(0))) → K(s(0))
K(s(s(0))) → S(s(s(s(s(s(0))))))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(s(0)))))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
H(f(x), g(x)) → S(x)
H(k(x), g(x)) → K(s(x))
H(k(x), g(x)) → S(x)
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
S(
s(
0)) →
F(
s(
0)) at position [0] we obtained the following new rules [LPAR04]:
S(s(0)) → F(h(0, 0)) → S(s(0)) → F(h(0, 0))
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(x)) → G(g(f(x)))
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(f(x))
G(s(x)) → S(s(g(x)))
F(g(x)) → F(x)
S(s(s(0))) → K(s(0))
K(s(s(0))) → S(s(s(s(s(s(0))))))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(s(0)))))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
H(f(x), g(x)) → S(x)
H(k(x), g(x)) → K(s(x))
H(k(x), g(x)) → S(x)
S(s(0)) → F(h(0, 0))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 6 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(s(s(s(s(0))))))
S(s(s(0))) → K(s(0))
K(s(s(0))) → S(s(s(s(s(0)))))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
S(
s(
s(
0))) →
K(
s(
0)) at position [0] we obtained the following new rules [LPAR04]:
S(s(s(0))) → K(h(0, 0)) → S(s(s(0))) → K(h(0, 0))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(s(s(s(s(0))))))
K(s(s(0))) → S(s(s(s(s(0)))))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
S(s(s(0))) → K(h(0, 0))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(s(s(0))))))
K(s(s(0))) → S(s(s(s(s(0)))))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
s(
s(
s(
s(
s(
0)))))) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(h(s(s(s(s(0)))), 0)) → K(s(s(0))) → S(h(s(s(s(s(0)))), 0))
K(s(s(0))) → S(h(0, s(s(s(s(0)))))) → K(s(s(0))) → S(h(0, s(s(s(s(0))))))
K(s(s(0))) → S(s(h(s(s(s(0))), 0))) → K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0)))))) → K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0)))) → K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0)))))) → K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0))))) → K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0)))))) → K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0))))) → K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0)))))) → K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0))))) → K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0)))))) → K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(s(0)))))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
K(s(s(0))) → S(h(s(s(s(s(0)))), 0))
K(s(s(0))) → S(h(0, s(s(s(s(0))))))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(s(s(s(0)))))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
s(
s(
s(
s(
0))))) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(h(s(s(s(0))), 0)) → K(s(s(0))) → S(h(s(s(s(0))), 0))
K(s(s(0))) → S(h(0, s(s(s(0))))) → K(s(s(0))) → S(h(0, s(s(s(0)))))
K(s(s(0))) → S(s(h(s(s(0)), 0))) → K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0))))) → K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0)))) → K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0))))) → K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0)))) → K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0))))) → K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0)))) → K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0))))) → K(s(s(0))) → S(s(s(s(h(0, 0)))))
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(s(0))))
K(s(s(0))) → S(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(h(s(s(s(0))), 0))
K(s(s(0))) → S(h(0, s(s(s(0)))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(s(s(0))))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
s(
s(
s(
0)))) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(h(s(s(0)), 0)) → K(s(s(0))) → S(h(s(s(0)), 0))
K(s(s(0))) → S(h(0, s(s(0)))) → K(s(s(0))) → S(h(0, s(s(0))))
K(s(s(0))) → S(k(s(0))) → K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0)))) → K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0))) → K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0)))) → K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0))) → K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0)))) → K(s(s(0))) → S(s(s(h(0, 0))))
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(h(s(s(0)), 0))
K(s(s(0))) → S(h(0, s(s(0))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(24) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(s(0)))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
s(
s(
0))) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(f(s(0))) → K(s(s(0))) → S(f(s(0)))
K(s(s(0))) → S(h(s(0), 0)) → K(s(s(0))) → S(h(s(0), 0))
K(s(s(0))) → S(h(0, s(0))) → K(s(s(0))) → S(h(0, s(0)))
K(s(s(0))) → S(k(0)) → K(s(s(0))) → S(k(0))
K(s(s(0))) → S(s(h(0, 0))) → K(s(s(0))) → S(s(h(0, 0)))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(f(s(0)))
K(s(s(0))) → S(h(s(0), 0))
K(s(s(0))) → S(h(0, s(0)))
K(s(s(0))) → S(k(0))
K(s(s(0))) → S(s(h(0, 0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(f(s(0)))
K(s(s(0))) → S(k(0))
K(s(s(0))) → S(s(h(0, 0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
f(
s(
0))) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(f(h(0, 0))) → K(s(s(0))) → S(f(h(0, 0)))
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(k(0))
K(s(s(0))) → S(s(h(0, 0)))
K(s(s(0))) → S(f(h(0, 0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(k(0))
K(s(s(0))) → S(s(h(0, 0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(34) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
k(
0)) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(0) → K(s(s(0))) → S(0)
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(s(h(0, 0)))
K(s(s(0))) → S(0)
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(36) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(s(h(0, 0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(38) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
K(
s(
s(
0))) →
S(
s(
h(
0,
0))) at position [0] we obtained the following new rules [LPAR04]:
K(s(s(0))) → S(h(h(0, 0), 0)) → K(s(s(0))) → S(h(h(0, 0), 0))
K(s(s(0))) → S(h(0, h(0, 0))) → K(s(s(0))) → S(h(0, h(0, 0)))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
K(s(s(0))) → S(h(h(0, 0), 0))
K(s(s(0))) → S(h(0, h(0, 0)))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(k(0)))
K(s(s(0))) → S(s(s(h(0, 0))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
K(s(s(0))) → S(k(s(0)))
K(s(s(0))) → S(s(k(0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(h(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
h(k(x), g(x)) → k(s(x))
k(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(0)) → f(s(0))
s(s(s(0))) → k(s(0))
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
g(s(x)) → s(s(g(x)))
s(s(0)) → k(0)
k(0) → 0
k(s(0)) → s(0)
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(k(0))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(s(h(0, 0))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
K(s(s(0))) → S(s(h(s(s(s(0))), 0)))
K(s(s(0))) → S(s(h(0, s(s(s(0))))))
K(s(s(0))) → S(s(s(h(s(s(0)), 0))))
K(s(s(0))) → S(s(s(h(0, s(s(0))))))
K(s(s(0))) → S(s(s(s(f(s(0))))))
K(s(s(0))) → S(s(s(s(h(s(0), 0)))))
K(s(s(0))) → S(s(s(s(h(0, s(0))))))
K(s(s(0))) → S(s(s(s(s(h(0, 0))))))
K(s(s(0))) → S(s(h(s(s(0)), 0)))
K(s(s(0))) → S(s(h(0, s(s(0)))))
K(s(s(0))) → S(s(s(f(s(0)))))
K(s(s(0))) → S(s(s(h(s(0), 0))))
K(s(s(0))) → S(s(s(h(0, s(0)))))
K(s(s(0))) → S(s(s(s(h(0, 0)))))
K(s(s(0))) → S(s(f(s(0))))
K(s(s(0))) → S(s(h(s(0), 0)))
K(s(s(0))) → S(s(h(0, s(0))))
K(s(s(0))) → S(s(s(h(0, 0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(s(x1)) = | | + | / | 0A | -I | 1A | \ |
| | 0A | -I | 1A | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(h(x1, x2)) = | | + | / | -I | -I | 0A | \ |
| | -I | -I | 0A | | |
\ | -I | -I | -I | / |
| · | x1 | + | / | -I | -I | 0A | \ |
| | -I | -I | 0A | | |
\ | -I | -I | -I | / |
| · | x2 |
POL(k(x1)) = | | + | / | -I | -I | 0A | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(f(x1)) = | | + | / | -I | -I | 2A | \ |
| | -I | -I | 3A | | |
\ | -I | -I | 2A | / |
| · | x1 |
POL(g(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 1A | -I | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
h(k(x), g(x)) → k(s(x))
k(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(0)) → f(s(0))
s(s(s(0))) → k(s(0))
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
g(s(x)) → s(s(g(x)))
s(s(0)) → k(0)
k(0) → 0
k(s(0)) → s(0)
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(k(s(0))))
K(s(s(0))) → S(s(s(k(0))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
K(s(s(0))) → S(s(k(s(0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(s(x1)) = | | + | / | 0A | 2A | -I | \ |
| | -I | -I | 1A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(k(x1)) = | | + | / | 0A | 2A | -I | \ |
| | -I | 0A | -I | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(h(x1, x2)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | 1A | | |
\ | -I | -I | 0A | / |
| · | x1 | + | / | 0A | -I | -I | \ |
| | -I | -I | 1A | | |
\ | -I | -I | -I | / |
| · | x2 |
POL(f(x1)) = | | + | / | 0A | 2A | -I | \ |
| | -I | 0A | 0A | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(g(x1)) = | | + | / | 0A | 2A | 3A | \ |
| | -I | -I | 1A | | |
\ | -I | -I | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
h(k(x), g(x)) → k(s(x))
k(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(0)) → f(s(0))
s(s(s(0))) → k(s(0))
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
g(s(x)) → s(s(g(x)))
s(s(0)) → k(0)
k(0) → 0
k(s(0)) → s(0)
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(k(0))))
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
S(s(s(s(s(s(s(s(0)))))))) → K(s(s(0)))
K(s(s(0))) → S(s(s(k(s(0)))))
K(s(s(0))) → S(s(s(s(k(0)))))
K(s(s(0))) → S(s(s(k(0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(h(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
h(k(x), g(x)) → k(s(x))
k(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(0)) → f(s(0))
s(s(s(0))) → k(s(0))
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
g(s(x)) → s(s(g(x)))
s(s(0)) → k(0)
k(0) → 0
k(s(0)) → s(0)
(49) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(50) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(51) YES
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(g(f(x)))
G(s(x)) → G(x)
F(g(x)) → G(f(x))
F(g(x)) → F(x)
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
F(g(x)) → G(g(f(x)))
F(g(x)) → G(f(x))
F(g(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( s(x1) ) = max{0, -2} |
POL( k(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
h(k(x), g(x)) → k(s(x))
k(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(0)) → f(s(0))
s(s(s(0))) → k(s(0))
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
g(s(x)) → s(s(g(x)))
s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → k(0)
k(0) → 0
k(s(0)) → s(0)
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
G(s(x)) → G(x)
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
The TRS R consists of the following rules:
s(s(0)) → f(s(0))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))
s(s(0)) → k(0)
k(0) → 0
s(s(s(0))) → k(s(0))
k(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → k(s(s(0)))
k(s(s(0))) → s(s(s(s(s(s(0))))))
h(k(x), g(x)) → k(s(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(59) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- G(s(x)) → G(x)
The graph contains the following edges 1 > 1
(60) YES