YES Termination w.r.t. Q proof of MNZ_10_0.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(0)) → F(0)
S(s(s(0))) → F(s(0))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(s(0))))))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
G(x) → H(x, x)
S(x) → H(x, 0)
S(x) → H(0, x)
F(g(x)) → G(g(f(x)))
F(g(x)) → G(f(x))
F(g(x)) → F(x)
G(s(x)) → S(s(g(x)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
H(f(x), g(x)) → F(s(x))
H(f(x), g(x)) → S(x)

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(0))) → F(s(0))
F(s(s(0))) → S(s(s(s(s(s(0))))))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(g(x)) → G(g(f(x)))
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(f(x))
G(s(x)) → S(s(g(x)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
F(g(x)) → F(x)
H(f(x), g(x)) → S(x)

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule S(s(s(0))) → F(s(0)) at position [0] we obtained the following new rules [LPAR04]:

S(s(s(0))) → F(h(0, 0)) → S(s(s(0))) → F(h(0, 0))

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(s(s(s(s(0))))))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(g(x)) → G(g(f(x)))
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(f(x))
G(s(x)) → S(s(g(x)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
F(g(x)) → F(x)
H(f(x), g(x)) → S(x)
S(s(s(0))) → F(h(0, 0))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(s(0))))))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(g(x)) → G(g(f(x)))
G(x) → H(x, x)
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(f(x))
G(s(x)) → S(s(g(x)))
G(s(x)) → S(g(x))
G(s(x)) → G(x)
F(g(x)) → F(x)
H(f(x), g(x)) → S(x)

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


G(x) → H(x, x)
G(s(x)) → S(s(g(x)))
G(s(x)) → S(g(x))
F(g(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( F(x1) ) = x1

POL( G(x1) ) = 1

POL( S(x1) ) = 0

POL( s(x1) ) = max{0, -1}

POL( h(x1, x2) ) = 0

POL( 0 ) = 0

POL( f(x1) ) = 2x1

POL( g(x1) ) = x1 + 1

POL( H(x1, x2) ) = 0


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(s(0))))))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(g(x)) → G(g(f(x)))
H(f(x), g(x)) → F(s(x))
F(g(x)) → G(f(x))
G(s(x)) → G(x)
H(f(x), g(x)) → S(x)

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(12) Complex Obligation (AND)

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(x)) → G(x)

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(x)) → G(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • G(s(x)) → G(x)
    The graph contains the following edges 1 > 1

(17) YES

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(s(s(s(s(0))))))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule F(s(s(0))) → S(s(s(s(s(s(0)))))) at position [0] we obtained the following new rules [LPAR04]:

F(s(s(0))) → S(h(s(s(s(s(0)))), 0)) → F(s(s(0))) → S(h(s(s(s(s(0)))), 0))
F(s(s(0))) → S(h(0, s(s(s(s(0)))))) → F(s(s(0))) → S(h(0, s(s(s(s(0))))))
F(s(s(0))) → S(s(h(s(s(s(0))), 0))) → F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0)))))) → F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0))))) → F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0)))) → F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0)))))) → F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0))))) → F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0))))) → F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0)))))) → F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0)))))) → F(s(s(0))) → S(s(s(s(s(h(0, 0))))))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(s(0)))))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(s(s(0))) → S(h(s(s(s(s(0)))), 0))
F(s(s(0))) → S(h(0, s(s(s(s(0))))))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(s(s(s(0)))))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule F(s(s(0))) → S(s(s(s(s(0))))) at position [0] we obtained the following new rules [LPAR04]:

F(s(s(0))) → S(h(s(s(s(0))), 0)) → F(s(s(0))) → S(h(s(s(s(0))), 0))
F(s(s(0))) → S(h(0, s(s(s(0))))) → F(s(s(0))) → S(h(0, s(s(s(0)))))
F(s(s(0))) → S(s(f(s(0)))) → F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0))) → F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0))))) → F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0)))) → F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0)))) → F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0))))) → F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0))))) → F(s(s(0))) → S(s(s(s(h(0, 0)))))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(s(0))))
F(s(s(0))) → S(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(h(s(s(s(0))), 0))
F(s(s(0))) → S(h(0, s(s(s(0)))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(s(s(0))))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule F(s(s(0))) → S(s(s(s(0)))) at position [0] we obtained the following new rules [LPAR04]:

F(s(s(0))) → S(f(s(0))) → F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(h(s(s(0)), 0)) → F(s(s(0))) → S(h(s(s(0)), 0))
F(s(s(0))) → S(h(0, s(s(0)))) → F(s(s(0))) → S(h(0, s(s(0))))
F(s(s(0))) → S(s(f(0))) → F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0))) → F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0)))) → F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0)))) → F(s(s(0))) → S(s(s(h(0, 0))))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(h(s(s(0)), 0))
F(s(s(0))) → S(h(0, s(s(0))))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(s(0)))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule F(s(s(0))) → S(s(s(0))) at position [0] we obtained the following new rules [LPAR04]:

F(s(s(0))) → S(f(0)) → F(s(s(0))) → S(f(0))
F(s(s(0))) → S(h(s(0), 0)) → F(s(s(0))) → S(h(s(0), 0))
F(s(s(0))) → S(h(0, s(0))) → F(s(s(0))) → S(h(0, s(0)))
F(s(s(0))) → S(s(h(0, 0))) → F(s(s(0))) → S(s(h(0, 0)))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))
F(s(s(0))) → S(f(0))
F(s(s(0))) → S(h(s(0), 0))
F(s(s(0))) → S(h(0, s(0)))
F(s(s(0))) → S(s(h(0, 0)))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))
F(s(s(0))) → S(f(0))
F(s(s(0))) → S(s(h(0, 0)))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule F(s(s(0))) → S(f(0)) at position [0] we obtained the following new rules [LPAR04]:

F(s(s(0))) → S(0) → F(s(s(0))) → S(0)

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))
F(s(s(0))) → S(s(h(0, 0)))
F(s(s(0))) → S(0)

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))
F(s(s(0))) → S(s(h(0, 0)))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule F(s(s(0))) → S(s(h(0, 0))) at position [0] we obtained the following new rules [LPAR04]:

F(s(s(0))) → S(h(h(0, 0), 0)) → F(s(s(0))) → S(h(h(0, 0), 0))
F(s(s(0))) → S(h(0, h(0, 0))) → F(s(s(0))) → S(h(0, h(0, 0)))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))
F(s(s(0))) → S(h(h(0, 0), 0))
F(s(s(0))) → S(h(0, h(0, 0)))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(f(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(f(0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :

POL(F(x1)) = 0 +
[0,1]
·x1

POL(s(x1)) =
/1\
\0/
+
/00\
\10/
·x1

POL(0) =
/0\
\0/

POL(S(x1)) = 0 +
[0,1]
·x1

POL(h(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\10/
·x2

POL(f(x1)) =
/0\
\0/
+
/10\
\10/
·x1

POL(g(x1)) =
/1\
\0/
+
/00\
\10/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(h(0, s(0))))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(h(0, s(0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(F(x1)) = 1A +
[2A,3A,0A]
·x1

POL(s(x1)) =
/0A\
|3A|
\-I/
+
/-I0A1A\
|0A0A2A|
\-I-I1A/
·x1

POL(0) =
/3A\
|-I|
\-I/

POL(S(x1)) = 3A +
[3A,0A,2A]
·x1

POL(h(x1, x2)) =
/0A\
|0A|
\-I/
+
/-I-I-I\
|-I0A-I|
\-I-I-I/
·x1 +
/-I0A-I\
|0A-I2A|
\-I-I-I/
·x2

POL(f(x1)) =
/3A\
|3A|
\-I/
+
/0A-I2A\
|0A-I2A|
\-I-I-I/
·x1

POL(g(x1)) =
/0A\
|3A|
\-I/
+
/0A0A3A\
|0A0A3A|
\-I-I-I/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(h(s(0), 0)))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(h(s(s(s(0))), 0)))
F(s(s(0))) → S(s(h(s(s(0)), 0)))
F(s(s(0))) → S(s(h(s(0), 0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(F(x1)) = 0A +
[1A,0A,-I]
·x1

POL(s(x1)) =
/3A\
|3A|
\-I/
+
/0A-I-I\
|3A0A3A|
\-I-I3A/
·x1

POL(0) =
/0A\
|2A|
\-I/

POL(S(x1)) = -I +
[0A,0A,-I]
·x1

POL(h(x1, x2)) =
/0A\
|3A|
\-I/
+
/-I-I-I\
|-I-I-I|
\-I-I-I/
·x1 +
/0A-I-I\
|3A-I0A|
\-I-I-I/
·x2

POL(f(x1)) =
/-I\
|3A|
\-I/
+
/0A-I-I\
|3A-I-I|
\-I-I-I/
·x1

POL(g(x1)) =
/3A\
|3A|
\-I/
+
/0A-I-I\
|3A-I0A|
\-I-I-I/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(h(0, s(s(0)))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(h(0, s(s(s(0))))))
F(s(s(0))) → S(s(h(0, s(s(0)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(S(x1)) = 3A +
[-I,-I,3A]
·x1

POL(s(x1)) =
/3A\
|3A|
\3A/
+
/-I-I-I\
|0A-I-I|
\2A3A0A/
·x1

POL(0) =
/1A\
|0A|
\0A/

POL(F(x1)) = 1A +
[0A,-I,3A]
·x1

POL(h(x1, x2)) =
/3A\
|1A|
\-I/
+
/-I-I-I\
|0A-I-I|
\-I3A-I/
·x1 +
/-I-I-I\
|-I-I-I|
\2A0A-I/
·x2

POL(f(x1)) =
/3A\
|3A|
\0A/
+
/0A-I-I\
|0A0A-I|
\3A3A-I/
·x1

POL(g(x1)) =
/3A\
|3A|
\3A/
+
/0A0A-I\
|0A-I-I|
\3A3A0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(f(s(0)))
F(s(s(0))) → S(s(s(h(0, 0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(s(h(s(s(0)), 0))))
F(s(s(0))) → S(s(s(h(0, s(s(0))))))
F(s(s(0))) → S(s(s(s(h(s(0), 0)))))
F(s(s(0))) → S(s(s(s(h(0, s(0))))))
F(s(s(0))) → S(s(s(s(s(h(0, 0))))))
F(s(s(0))) → S(s(s(h(s(0), 0))))
F(s(s(0))) → S(s(s(h(0, s(0)))))
F(s(s(0))) → S(s(s(s(h(0, 0)))))
F(s(s(0))) → S(s(s(h(0, 0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(S(x1)) = 0A +
[1A,-I,-I]
·x1

POL(s(x1)) =
/0A\
|0A|
\-I/
+
/0A0A-I\
|-I0A-I|
\-I-I-I/
·x1

POL(0) =
/1A\
|-I|
\-I/

POL(F(x1)) = 1A +
[1A,-I,-I]
·x1

POL(f(x1)) =
/0A\
|0A|
\-I/
+
/0A-I-I\
|-I0A-I|
\-I-I-I/
·x1

POL(h(x1, x2)) =
/0A\
|-I|
\-I/
+
/-I0A-I\
|-I0A-I|
\-I-I-I/
·x1 +
/-I0A-I\
|-I-I-I|
\-I-I-I/
·x2

POL(g(x1)) =
/0A\
|-I|
\-I/
+
/0A0A-I\
|0A0A-I|
\-I-I2A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(s(f(0))))
F(s(s(0))) → S(f(s(0)))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(f(s(0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(S(x1)) = 0A +
[-I,3A,-I]
·x1

POL(s(x1)) =
/0A\
|1A|
\0A/
+
/-I-I-I\
|0A0A3A|
\0A-I-I/
·x1

POL(0) =
/0A\
|0A|
\-I/

POL(F(x1)) = 2A +
[1A,3A,-I]
·x1

POL(f(x1)) =
/0A\
|2A|
\0A/
+
/0A-I-I\
|1A0A-I|
\-I-I-I/
·x1

POL(h(x1, x2)) =
/0A\
|-I|
\0A/
+
/-I-I-I\
|-I0A-I|
\-I-I-I/
·x1 +
/-I-I-I\
|0A-I3A|
\-I-I-I/
·x2

POL(g(x1)) =
/0A\
|3A|
\0A/
+
/-I-I0A\
|2A0A3A|
\-I-I0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(f(s(0))))
F(s(s(0))) → S(s(s(f(0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(f(s(0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(S(x1)) = 1A +
[1A,-I,2A]
·x1

POL(s(x1)) =
/2A\
|2A|
\-I/
+
/-I-I2A\
|-I-I0A|
\-I0A0A/
·x1

POL(0) =
/1A\
|-I|
\-I/

POL(F(x1)) = 1A +
[-I,3A,-I]
·x1

POL(f(x1)) =
/0A\
|2A|
\0A/
+
/0A2A2A\
|-I0A0A|
\-I-I0A/
·x1

POL(h(x1, x2)) =
/2A\
|0A|
\-I/
+
/-I-I-I\
|-I-I-I|
\-I-I-I/
·x1 +
/-I-I2A\
|-I-I0A|
\-I0A0A/
·x2

POL(g(x1)) =
/3A\
|2A|
\2A/
+
/0A2A2A\
|-I-I0A|
\-I0A0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(s(f(0)))))
F(s(s(0))) → S(s(s(f(0))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(s(s(0))) → S(s(s(f(0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(S(x1)) = 2A +
[3A,2A,0A]
·x1

POL(s(x1)) =
/1A\
|-I|
\-I/
+
/0A-I-I\
|-I0A2A|
\0A-I0A/
·x1

POL(0) =
/0A\
|-I|
\-I/

POL(F(x1)) = 1A +
[0A,3A,-I]
·x1

POL(f(x1)) =
/0A\
|-I|
\-I/
+
/0A-I0A\
|-I1A-I|
\0A-I0A/
·x1

POL(h(x1, x2)) =
/1A\
|-I|
\-I/
+
/-I-I-I\
|-I0A2A|
\-I-I-I/
·x1 +
/0A-I-I\
|-I0A2A|
\-I-I0A/
·x2

POL(g(x1)) =
/1A\
|3A|
\1A/
+
/0A-I0A\
|3A0A3A|
\0A-I0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(s(f(0)))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


S(s(s(s(s(s(s(s(0)))))))) → F(s(s(0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(S(x1)) = 0A +
[-I,3A,2A]
·x1

POL(s(x1)) =
/0A\
|0A|
\1A/
+
/0A-I0A\
|-I-I0A|
\0A0A-I/
·x1

POL(0) =
/0A\
|2A|
\-I/

POL(F(x1)) = 1A +
[1A,2A,2A]
·x1

POL(f(x1)) =
/0A\
|-I|
\-I/
+
/0A-I-I\
|0A0A-I|
\0A-I0A/
·x1

POL(h(x1, x2)) =
/0A\
|0A|
\0A/
+
/-I-I-I\
|-I-I0A|
\0A-I-I/
·x1 +
/0A-I-I\
|-I-I-I|
\0A-I-I/
·x2

POL(g(x1)) =
/1A\
|0A|
\0A/
+
/0A0A0A\
|0A-I0A|
\0A0A0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

s(x) → h(x, 0)
s(x) → h(0, x)
s(s(0)) → f(0)
s(s(s(0))) → f(s(0))
f(s(s(0))) → s(s(s(s(s(s(0))))))
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(g(x)) → g(g(f(x)))
g(x) → h(x, x)
h(f(x), g(x)) → f(s(x))
g(s(x)) → s(s(g(x)))
f(0) → 0
f(s(0)) → s(0)

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(s(s(0))) → S(s(s(f(s(0)))))
F(s(s(0))) → S(s(s(s(f(0)))))

The TRS R consists of the following rules:

s(s(0)) → f(0)
f(0) → 0
s(s(s(0))) → f(s(0))
f(s(0)) → s(0)
s(s(s(s(s(s(s(s(0)))))))) → f(s(s(0)))
f(s(s(0))) → s(s(s(s(s(s(0))))))
g(x) → h(x, x)
s(x) → h(x, 0)
s(x) → h(0, x)
f(g(x)) → g(g(f(x)))
g(s(x)) → s(s(g(x)))
h(f(x), g(x)) → f(s(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(62) TRUE