(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
NTHTAIL(n, l) → GE(n, length(l))
NTHTAIL(n, l) → LENGTH(l)
COND(false, n, l) → TAIL(nthtail(s(n), l))
COND(false, n, l) → NTHTAIL(s(n), l)
LENGTH(cons(x, l)) → LENGTH(l)
GE(s(u), s(v)) → GE(u, v)
The TRS R consists of the following rules:
nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(u), s(v)) → GE(u, v)
The TRS R consists of the following rules:
nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(u), s(v)) → GE(u, v)
R is empty.
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(u), s(v)) → GE(u, v)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(u), s(v)) → GE(u, v)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
The TRS R consists of the following rules:
nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
R is empty.
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(cons(x, l)) → LENGTH(l)
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
COND(false, n, l) → NTHTAIL(s(n), l)
NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
The TRS R consists of the following rules:
nthtail(n, l) → cond(ge(n, length(l)), n, l)
cond(true, n, l) → l
cond(false, n, l) → tail(nthtail(s(n), l))
tail(nil) → nil
tail(cons(x, l)) → l
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
COND(false, n, l) → NTHTAIL(s(n), l)
NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
nthtail(x0, x1)
cond(true, x0, x1)
cond(false, x0, x1)
tail(nil)
tail(cons(x0, x1))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
COND(false, n, l) → NTHTAIL(s(n), l)
NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(26) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
COND(
false,
n,
l) →
NTHTAIL(
s(
n),
l) the following chains were created:
- We consider the chain NTHTAIL(x2, x3) → COND(ge(x2, length(x3)), x2, x3), COND(false, x4, x5) → NTHTAIL(s(x4), x5) which results in the following constraint:
(1) (COND(ge(x2, length(x3)), x2, x3)=COND(false, x4, x5) ⇒ COND(false, x4, x5)≥NTHTAIL(s(x4), x5)) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (length(x3)=x12∧ge(x2, x12)=false ⇒ COND(false, x2, x3)≥NTHTAIL(s(x2), x3)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x2, x12)=false which results in the following new constraints:
(3) (false=false∧length(x3)=s(x14) ⇒ COND(false, 0, x3)≥NTHTAIL(s(0), x3)) |
(4) (ge(x16, x15)=false∧length(x3)=s(x15)∧(∀x17:ge(x16, x15)=false∧length(x17)=x15 ⇒ COND(false, x16, x17)≥NTHTAIL(s(x16), x17)) ⇒ COND(false, s(x16), x3)≥NTHTAIL(s(s(x16)), x3)) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (length(x3)=s(x14) ⇒ COND(false, 0, x3)≥NTHTAIL(s(0), x3)) |
We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on length(x3)=s(x15) which results in the following new constraint:
(6) (s(length(x21))=s(x15)∧ge(x16, x15)=false∧(∀x17:ge(x16, x15)=false∧length(x17)=x15 ⇒ COND(false, x16, x17)≥NTHTAIL(s(x16), x17))∧(∀x23,x24,x25:length(x21)=s(x23)∧ge(x24, x23)=false∧(∀x25:ge(x24, x23)=false∧length(x25)=x23 ⇒ COND(false, x24, x25)≥NTHTAIL(s(x24), x25)) ⇒ COND(false, s(x24), x21)≥NTHTAIL(s(s(x24)), x21)) ⇒ COND(false, s(x16), cons(x22, x21))≥NTHTAIL(s(s(x16)), cons(x22, x21))) |
We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on length(x3)=s(x14) which results in the following new constraint:
(7) (s(length(x18))=s(x14)∧(∀x20:length(x18)=s(x20) ⇒ COND(false, 0, x18)≥NTHTAIL(s(0), x18)) ⇒ COND(false, 0, cons(x19, x18))≥NTHTAIL(s(0), cons(x19, x18))) |
We simplified constraint (7) using rules (I), (II), (IV) which results in the following new constraint:
(8) (COND(false, 0, cons(x19, x18))≥NTHTAIL(s(0), cons(x19, x18))) |
We simplified constraint (6) using rules (I), (II) which results in the following new constraint:
(9) (length(x21)=x15∧ge(x16, x15)=false∧(∀x17:ge(x16, x15)=false∧length(x17)=x15 ⇒ COND(false, x16, x17)≥NTHTAIL(s(x16), x17))∧(∀x23,x24,x25:length(x21)=s(x23)∧ge(x24, x23)=false∧(∀x25:ge(x24, x23)=false∧length(x25)=x23 ⇒ COND(false, x24, x25)≥NTHTAIL(s(x24), x25)) ⇒ COND(false, s(x24), x21)≥NTHTAIL(s(s(x24)), x21)) ⇒ COND(false, s(x16), cons(x22, x21))≥NTHTAIL(s(s(x16)), cons(x22, x21))) |
We simplified constraint (9) using rule (VI) where we applied the induction hypothesis (∀x17:ge(x16, x15)=false∧length(x17)=x15 ⇒ COND(false, x16, x17)≥NTHTAIL(s(x16), x17)) with σ = [x17 / x21] which results in the following new constraint:
(10) (COND(false, x16, x21)≥NTHTAIL(s(x16), x21)∧(∀x23,x24,x25:length(x21)=s(x23)∧ge(x24, x23)=false∧(∀x25:ge(x24, x23)=false∧length(x25)=x23 ⇒ COND(false, x24, x25)≥NTHTAIL(s(x24), x25)) ⇒ COND(false, s(x24), x21)≥NTHTAIL(s(s(x24)), x21)) ⇒ COND(false, s(x16), cons(x22, x21))≥NTHTAIL(s(s(x16)), cons(x22, x21))) |
We simplified constraint (10) using rule (IV) which results in the following new constraint:
(11) (COND(false, x16, x21)≥NTHTAIL(s(x16), x21) ⇒ COND(false, s(x16), cons(x22, x21))≥NTHTAIL(s(s(x16)), cons(x22, x21))) |
For Pair
NTHTAIL(
n,
l) →
COND(
ge(
n,
length(
l)),
n,
l) the following chains were created:
- We consider the chain COND(false, x6, x7) → NTHTAIL(s(x6), x7), NTHTAIL(x8, x9) → COND(ge(x8, length(x9)), x8, x9) which results in the following constraint:
(1) (NTHTAIL(s(x6), x7)=NTHTAIL(x8, x9) ⇒ NTHTAIL(x8, x9)≥COND(ge(x8, length(x9)), x8, x9)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (NTHTAIL(s(x6), x7)≥COND(ge(s(x6), length(x7)), s(x6), x7)) |
To summarize, we get the following constraints P
≥ for the following pairs.
- COND(false, n, l) → NTHTAIL(s(n), l)
- (COND(false, 0, cons(x19, x18))≥NTHTAIL(s(0), cons(x19, x18)))
- (COND(false, x16, x21)≥NTHTAIL(s(x16), x21) ⇒ COND(false, s(x16), cons(x22, x21))≥NTHTAIL(s(s(x16)), cons(x22, x21)))
- NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
- (NTHTAIL(s(x6), x7)≥COND(ge(s(x6), length(x7)), s(x6), x7))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 1
POL(COND(x1, x2, x3)) = -1 - x1 - x2 + x3
POL(NTHTAIL(x1, x2)) = -1 - x1 + x2
POL(c) = -2
POL(cons(x1, x2)) = 1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(length(x1)) = x1
POL(nil) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
The following pairs are in P
>:
COND(false, n, l) → NTHTAIL(s(n), l)
The following pairs are in P
bound:
COND(false, n, l) → NTHTAIL(s(n), l)
The following rules are usable:
true → ge(u, 0)
false → ge(0, s(v))
ge(u, v) → ge(s(u), s(v))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
NTHTAIL(n, l) → COND(ge(n, length(l)), n, l)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE