(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
The TRS R 2 is
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
The signature Sigma is {
add}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD(true, x, xs) → ADD(and(isNat(x), isList(xs)), x, Cons(tt, xs))
ADD(true, x, xs) → AND(isNat(x), isList(xs))
ADD(true, x, xs) → ISNAT(x)
ADD(true, x, xs) → ISLIST(xs)
ISLIST(Cons(x, xs)) → ISLIST(xs)
ISNAT(s(x)) → ISNAT(x)
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(s(x)) → ISNAT(x)
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(s(x)) → ISNAT(x)
R is empty.
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(s(x)) → ISNAT(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNAT(s(x)) → ISNAT(x)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISLIST(Cons(x, xs)) → ISLIST(xs)
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISLIST(Cons(x, xs)) → ISLIST(xs)
R is empty.
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISLIST(Cons(x, xs)) → ISLIST(xs)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISLIST(Cons(x, xs)) → ISLIST(xs)
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD(true, x, xs) → ADD(and(isNat(x), isList(xs)), x, Cons(tt, xs))
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
The set Q consists of the following terms:
add(true, x0, x1)
isList(Cons(x0, x1))
isList(nil)
isNat(s(x0))
isNat(0)
and(true, true)
and(false, x0)
and(x0, false)
We have to consider all minimal (P,Q,R)-chains.
(22) MNOCProof (EQUIVALENT transformation)
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD(true, x, xs) → ADD(and(isNat(x), isList(xs)), x, Cons(tt, xs))
The TRS R consists of the following rules:
add(true, x, xs) → add(and(isNat(x), isList(xs)), x, Cons(tt, xs))
isList(Cons(x, xs)) → isList(xs)
isList(nil) → true
isNat(s(x)) → isNat(x)
isNat(0) → true
and(true, true) → true
and(false, x) → false
and(x, false) → false
Q is empty.
We have to consider all (P,Q,R)-chains.
(24) NonLoopProof (COMPLETE transformation)
By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP.
We apply the theorem with m = 1, b = 1,
σ' = [ ], and μ' = [ ] on the rule
ADD(true, 0, Cons(tt, zr1))[zr1 / Cons(tt, zr1)]n[zr1 / nil] → ADD(true, 0, Cons(tt, Cons(tt, zr1)))[zr1 / Cons(tt, zr1)]n[zr1 / nil]
This rule is correct for the QDP as the following derivation shows:
ADD(true, 0, Cons(tt, zr1))[zr1 / Cons(tt, zr1)]n[zr1 / nil] → ADD(true, 0, Cons(tt, Cons(tt, zr1)))[zr1 / Cons(tt, zr1)]n[zr1 / nil]
by Equivalence by Domain Renaming of the lhs with [zl0 / zr1]
intermediate steps: Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs)
ADD(true, 0, Cons(x0, zl1))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]n[zr1 / nil, zl1 / nil] → ADD(true, 0, Cons(tt, Cons(x0, zr1)))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]n[zr1 / nil, zl1 / nil]
by Narrowing at position: [0]
intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs)
ADD(true, 0, Cons(x1, zl1))[zr1 / Cons(x1, zr1), zl1 / Cons(x1, zl1)]n[zr1 / nil, zl1 / nil] → ADD(and(true, true), 0, Cons(tt, Cons(x1, zr1)))[zr1 / Cons(x1, zr1), zl1 / Cons(x1, zl1)]n[zr1 / nil, zl1 / nil]
by Narrowing at position: [0,0]
intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs)
ADD(true, x2, Cons(x0, zl1))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]n[zr1 / nil, zl1 / nil] → ADD(and(isNat(x2), true), x2, Cons(tt, Cons(x0, zr1)))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]n[zr1 / nil, zl1 / nil]
by Narrowing at position: [0,1]
intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs)
ADD(true, x1, Cons(y0, zs1))[zs1 / Cons(y0, zs1)]n[zs1 / y1] → ADD(and(isNat(x1), isList(y1)), x1, Cons(tt, Cons(y0, zs1)))[zs1 / Cons(y0, zs1)]n[zs1 / y1]
by Narrowing at position: [0,1]
intermediate steps: Instantiate mu - Instantiate Sigma - Instantiation - Instantiation
ADD(true, x, xs)[ ]n[ ] → ADD(and(isNat(x), isList(xs)), x, Cons(tt, xs))[ ]n[ ]
by Rule from TRS P
intermediate steps: Equiv IPS (rhs) - Equiv IPS (rhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (lhs)
isList(Cons(x, xs))[xs / Cons(x, xs)]n[ ] → isList(xs)[ ]n[ ]
by PatternCreation I with delta: [ ], theta: [ ], sigma: [xs / Cons(x, xs)]
isList(Cons(x, xs))[ ]n[ ] → isList(xs)[ ]n[ ]
by Rule from TRS R
intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs)
isList(nil)[ ]n[ ] → true[ ]n[ ]
by Rule from TRS R
intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs)
isNat(0)[ ]n[ ] → true[ ]n[ ]
by Rule from TRS R
intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs)
and(true, true)[ ]n[ ] → true[ ]n[ ]
by Rule from TRS R
(25) NO