(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
*1(x, +(y, z)) → *1(x, y)
*1(x, +(y, z)) → *1(x, z)
*1(+(y, z), x) → +1(*(x, y), *(x, z))
*1(+(y, z), x) → *1(x, y)
*1(+(y, z), x) → *1(x, z)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
The TRS R consists of the following rules:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
The TRS R consists of the following rules:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
The TRS R consists of the following rules:
+(+(x, y), z) → +(x, +(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- +1(+(x, y), z) → +1(y, z)
The graph contains the following edges 1 > 1, 2 >= 2
- +1(+(x, y), z) → +1(x, +(y, z))
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
*1(+(y, z), x) → *1(x, y)
*1(+(y, z), x) → *1(x, z)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
The TRS R consists of the following rules:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
*1(+(y, z), x) → *1(x, y)
*1(+(y, z), x) → *1(x, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(*(x1, x2)) = x1 + x1·x2 + x2
POL(*1(x1, x2)) = x1 + x1·x2
POL(+(x1, x2)) = 1 + x1 + x2
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
*1(*(x, y), z) → *1(y, z)
The TRS R consists of the following rules:
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
*(*(x, y), z) → *(x, *(y, z))
+(+(x, y), z) → +(x, +(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- *1(x, +(y, z)) → *1(x, z)
The graph contains the following edges 1 >= 1, 2 > 2
- *1(x, +(y, z)) → *1(x, y)
The graph contains the following edges 1 >= 1, 2 > 2
- *1(*(x, y), z) → *1(x, *(y, z))
The graph contains the following edges 1 > 1
- *1(*(x, y), z) → *1(y, z)
The graph contains the following edges 1 > 1, 2 >= 2
(14) YES