(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(minus, app'(s, x)), app'(s, y)) → APP'(app'(minus, x), y)
APP'(app'(minus, app'(s, x)), app'(s, y)) → APP'(minus, x)
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(app'(quot, app'(app'(minus, x), y)), app'(s, y))
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(quot, app'(app'(minus, x), y))
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(app'(minus, x), y)
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(minus, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(app'(if_low, app'(app'(le, m), n)), n)
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(if_low, app'(app'(le, m), n))
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(app'(le, m), n)
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(le, m)
APP'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(low, n), x))
APP'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → APP'(app'(low, n), x)
APP'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → APP'(low, n)
APP'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → APP'(app'(low, n), x)
APP'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → APP'(low, n)
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(app'(if_high, app'(app'(le, m), n)), n)
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(if_high, app'(app'(le, m), n))
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(app'(le, m), n)
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(le, m)
APP'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → APP'(app'(high, n), x)
APP'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → APP'(high, n)
APP'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(high, n), x))
APP'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → APP'(app'(high, n), x)
APP'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → APP'(high, n)
APP'(quicksort, app'(app'(add, n), x)) → APP'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
APP'(quicksort, app'(app'(add, n), x)) → APP'(app, app'(quicksort, app'(app'(low, n), x)))
APP'(quicksort, app'(app'(add, n), x)) → APP'(quicksort, app'(app'(low, n), x))
APP'(quicksort, app'(app'(add, n), x)) → APP'(app'(low, n), x)
APP'(quicksort, app'(app'(add, n), x)) → APP'(low, n)
APP'(quicksort, app'(app'(add, n), x)) → APP'(app'(add, n), app'(quicksort, app'(app'(high, n), x)))
APP'(quicksort, app'(app'(add, n), x)) → APP'(quicksort, app'(app'(high, n), x))
APP'(quicksort, app'(app'(add, n), x)) → APP'(app'(high, n), x)
APP'(quicksort, app'(app'(add, n), x)) → APP'(high, n)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 38 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
R is empty.
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(10) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
app1(add(n, x), y) → app1(x, y)
R is empty.
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(12) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
app1(add(n, x), y) → app1(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- app1(add(n, x), y) → app1(x, y)
The graph contains the following edges 1 > 1, 2 >= 2
(15) YES
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
R is empty.
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(19) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
le1(s(x), s(y)) → le1(x, y)
R is empty.
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(21) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
le1(s(x), s(y)) → le1(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- le1(s(x), s(y)) → le1(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
APP'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → APP'(app'(high, n), x)
APP'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → APP'(app'(high, n), x)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(high, n), app'(app'(add, m), x)) → APP'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
APP'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → APP'(app'(high, n), x)
APP'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → APP'(app'(high, n), x)
The TRS R consists of the following rules:
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(28) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
high1(n, add(m, x)) → if_high1(le(m, n), n, add(m, x))
if_high1(true, n, add(m, x)) → high1(n, x)
if_high1(false, n, add(m, x)) → high1(n, x)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(30) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
high1(n, add(m, x)) → if_high1(le(m, n), n, add(m, x))
if_high1(true, n, add(m, x)) → high1(n, x)
if_high1(false, n, add(m, x)) → high1(n, x)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- high1(n, add(m, x)) → if_high1(le(m, n), n, add(m, x))
The graph contains the following edges 1 >= 2, 2 >= 3
- if_high1(true, n, add(m, x)) → high1(n, x)
The graph contains the following edges 2 >= 1, 3 > 2
- if_high1(false, n, add(m, x)) → high1(n, x)
The graph contains the following edges 2 >= 1, 3 > 2
(33) YES
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
APP'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → APP'(app'(low, n), x)
APP'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → APP'(app'(low, n), x)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(low, n), app'(app'(add, m), x)) → APP'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
APP'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → APP'(app'(low, n), x)
APP'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → APP'(app'(low, n), x)
The TRS R consists of the following rules:
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(37) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
low1(n, add(m, x)) → if_low1(le(m, n), n, add(m, x))
if_low1(true, n, add(m, x)) → low1(n, x)
if_low1(false, n, add(m, x)) → low1(n, x)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(39) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
low1(n, add(m, x)) → if_low1(le(m, n), n, add(m, x))
if_low1(true, n, add(m, x)) → low1(n, x)
if_low1(false, n, add(m, x)) → low1(n, x)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(41) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- low1(n, add(m, x)) → if_low1(le(m, n), n, add(m, x))
The graph contains the following edges 1 >= 2, 2 >= 3
- if_low1(true, n, add(m, x)) → low1(n, x)
The graph contains the following edges 2 >= 1, 3 > 2
- if_low1(false, n, add(m, x)) → low1(n, x)
The graph contains the following edges 2 >= 1, 3 > 2
(42) YES
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(quicksort, app'(app'(add, n), x)) → APP'(quicksort, app'(app'(high, n), x))
APP'(quicksort, app'(app'(add, n), x)) → APP'(quicksort, app'(app'(low, n), x))
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(44) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(quicksort, app'(app'(add, n), x)) → APP'(quicksort, app'(app'(high, n), x))
APP'(quicksort, app'(app'(add, n), x)) → APP'(quicksort, app'(app'(low, n), x))
The TRS R consists of the following rules:
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(46) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quicksort1(add(n, x)) → quicksort1(high(n, x))
quicksort1(add(n, x)) → quicksort1(low(n, x))
The TRS R consists of the following rules:
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(48) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quicksort1(add(n, x)) → quicksort1(high(n, x))
quicksort1(add(n, x)) → quicksort1(low(n, x))
The TRS R consists of the following rules:
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(50) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
quicksort1(add(n, x)) → quicksort1(low(n, x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quicksort1(x1) ) = max{0, 2x1 - 1} |
POL( high(x1, x2) ) = x2 + 2 |
POL( add(x1, x2) ) = x2 + 2 |
POL( if_high(x1, ..., x3) ) = x3 + 2 |
POL( if_low(x1, ..., x3) ) = max{0, 2x1 + x3 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_high(false, n, add(m, x)) → add(m, high(n, x))
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quicksort1(add(n, x)) → quicksort1(high(n, x))
The TRS R consists of the following rules:
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(52) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quicksort1(add(n, x)) → quicksort1(high(n, x))
The TRS R consists of the following rules:
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_high(false, n, add(m, x)) → add(m, high(n, x))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(54) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quicksort1(add(n, x)) → quicksort1(high(n, x))
The TRS R consists of the following rules:
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_high(false, n, add(m, x)) → add(m, high(n, x))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(56) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
quicksort1(add(n, x)) → quicksort1(high(n, x))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
quicksort1(
x1) =
x1
add(
x1,
x2) =
add(
x2)
high(
x1,
x2) =
x2
nil =
nil
if_high(
x1,
x2,
x3) =
x3
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
add_1=1
nil=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
(57) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_high(false, n, add(m, x)) → add(m, high(n, x))
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(58) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(59) YES
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(minus, app'(s, x)), app'(s, y)) → APP'(app'(minus, x), y)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(61) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(minus, app'(s, x)), app'(s, y)) → APP'(app'(minus, x), y)
R is empty.
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(63) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
minus1(s(x), s(y)) → minus1(x, y)
R is empty.
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(65) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
minus1(s(x), s(y)) → minus1(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(67) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- minus1(s(x), s(y)) → minus1(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(68) YES
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(app'(quot, app'(app'(minus, x), y)), app'(s, y))
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(70) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(quot, app'(s, x)), app'(s, y)) → APP'(app'(quot, app'(app'(minus, x), y)), app'(s, y))
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(72) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(73) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quot1(s(x), s(y)) → quot1(minus(x, y), s(y))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(74) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(75) Obligation:
Q DP problem:
The TRS P consists of the following rules:
quot1(s(x), s(y)) → quot1(minus(x, y), s(y))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(76) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
quot1(s(x), s(y)) → quot1(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
quot1(
x1,
x2) =
x1
s(
x1) =
s(
x1)
minus(
x1,
x2) =
x1
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
s_1=1
dummyConstant=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
(77) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(78) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(79) YES
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
The TRS R consists of the following rules:
app'(app'(minus, x), 0) → x
app'(app'(minus, app'(s, x)), app'(s, y)) → app'(app'(minus, x), y)
app'(app'(quot, 0), app'(s, y)) → 0
app'(app'(quot, app'(s, x)), app'(s, y)) → app'(s, app'(app'(quot, app'(app'(minus, x), y)), app'(s, y)))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(low, n), nil) → nil
app'(app'(low, n), app'(app'(add, m), x)) → app'(app'(app'(if_low, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_low, true), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(low, n), x))
app'(app'(app'(if_low, false), n), app'(app'(add, m), x)) → app'(app'(low, n), x)
app'(app'(high, n), nil) → nil
app'(app'(high, n), app'(app'(add, m), x)) → app'(app'(app'(if_high, app'(app'(le, m), n)), n), app'(app'(add, m), x))
app'(app'(app'(if_high, true), n), app'(app'(add, m), x)) → app'(app'(high, n), x)
app'(app'(app'(if_high, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(high, n), x))
app'(quicksort, nil) → nil
app'(quicksort, app'(app'(add, n), x)) → app'(app'(app, app'(quicksort, app'(app'(low, n), x))), app'(app'(add, n), app'(quicksort, app'(app'(high, n), x))))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)
The set Q consists of the following terms:
app'(app'(minus, x0), 0)
app'(app'(minus, app'(s, x0)), app'(s, x1))
app'(app'(quot, 0), app'(s, x0))
app'(app'(quot, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(app'(low, x0), nil)
app'(app'(low, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_low, false), x0), app'(app'(add, x1), x2))
app'(app'(high, x0), nil)
app'(app'(high, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_high, false), x0), app'(app'(add, x1), x2))
app'(quicksort, nil)
app'(quicksort, app'(app'(add, x0), x1))
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(81) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
The graph contains the following edges 1 > 1, 2 > 2
- APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
The graph contains the following edges 1 > 1, 2 > 2
- APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
The graph contains the following edges 1 >= 1, 2 > 2
- APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
The graph contains the following edges 2 > 2
- APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
The graph contains the following edges 2 >= 2
- APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
The graph contains the following edges 2 >= 2
(82) YES