(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(eq, app(s, x)), app(s, y)) → APP(app(eq, x), y)
APP(app(eq, app(s, x)), app(s, y)) → APP(eq, x)
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(app(edge, x), y), app(app(union, i), h))
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(union, i), h)
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(union, i)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i))
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(if_reach_1, app(app(eq, x), u)), x), y)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(if_reach_1, app(app(eq, x), u)), x)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(if_reach_1, app(app(eq, x), u))
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(eq, x), u)
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(eq, x)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i))
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(if_reach_2, app(app(eq, y), v)), x), y)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(if_reach_2, app(app(eq, y), v)), x)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(if_reach_2, app(app(eq, y), v))
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(eq, y), v)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(eq, y)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(reach, x), y), i)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(reach, x), y)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(reach, x)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(edge, u), v), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(or, app(app(app(app(reach, x), y), i), h))
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(reach, x), y), i)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(reach, x), y)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(reach, x)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, v), y), app(app(union, i), h)), empty)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(reach, v), y), app(app(union, i), h))
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(reach, v), y)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(reach, v)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(union, i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(union, i)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 38 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(union, i), h)
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(union, app(app(app(edge, x), y), i)), h) → APP(app(union, i), h)
R is empty.
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(10) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
union1(edge(x, y, i), h) → union1(i, h)
R is empty.
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(12) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
union1(edge(x, y, i), h) → union1(i, h)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- union1(edge(x, y, i), h) → union1(i, h)
The graph contains the following edges 1 > 1, 2 >= 2
(15) YES
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(eq, app(s, x)), app(s, y)) → APP(app(eq, x), y)
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(eq, app(s, x)), app(s, y)) → APP(app(eq, x), y)
R is empty.
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(19) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
eq1(s(x), s(y)) → eq1(x, y)
R is empty.
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(21) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
eq1(s(x), s(y)) → eq1(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- eq1(s(x), s(y)) → eq1(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, v), y), app(app(union, i), h)), empty)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), h)
APP(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, v), y), app(app(union, i), h)), empty)
APP(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → APP(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
The TRS R consists of the following rules:
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(28) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
if_reach_11(true, x, y, edge(u, v, i), h) → if_reach_21(eq(y, v), x, y, edge(u, v, i), h)
if_reach_21(false, x, y, edge(u, v, i), h) → reach1(x, y, i, h)
if_reach_21(false, x, y, edge(u, v, i), h) → reach1(v, y, union(i, h), empty)
if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
The TRS R consists of the following rules:
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(30) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
or(true, x0)
or(false, x0)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
map(x0, nil)
map(x0, cons(x1, x2))
filter(x0, nil)
filter(x0, cons(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
if_reach_11(true, x, y, edge(u, v, i), h) → if_reach_21(eq(y, v), x, y, edge(u, v, i), h)
if_reach_21(false, x, y, edge(u, v, i), h) → reach1(x, y, i, h)
if_reach_21(false, x, y, edge(u, v, i), h) → reach1(v, y, union(i, h), empty)
if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
The TRS R consists of the following rules:
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
We have to consider all minimal (P,Q,R)-chains.
(32) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
if_reach_11(true, x, y, edge(u, v, i), h) → if_reach_21(eq(y, v), x, y, edge(u, v, i), h)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( if_reach_11(x1, ..., x5) ) = 2x1 + 2x4 + 2x5 + 2 |
POL( if_reach_21(x1, ..., x5) ) = 2x4 + 2x5 |
POL( reach1(x1, ..., x4) ) = 2x3 + 2x4 + 2 |
POL( union(x1, x2) ) = x1 + x2 |
POL( edge(x1, ..., x3) ) = x3 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
if_reach_21(false, x, y, edge(u, v, i), h) → reach1(x, y, i, h)
if_reach_21(false, x, y, edge(u, v, i), h) → reach1(v, y, union(i, h), empty)
if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
The TRS R consists of the following rules:
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
We have to consider all minimal (P,Q,R)-chains.
(34) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
The TRS R consists of the following rules:
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
union(empty, x0)
union(edge(x0, x1, x2), x3)
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(40) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- reach1(x, y, edge(u, v, i), h) → if_reach_11(eq(x, u), x, y, edge(u, v, i), h)
The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4, 4 >= 5
- if_reach_11(false, x, y, edge(u, v, i), h) → reach1(x, y, i, edge(u, v, h))
The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3
(41) YES
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
The TRS R consists of the following rules:
app(app(eq, 0), 0) → true
app(app(eq, 0), app(s, x)) → false
app(app(eq, app(s, x)), 0) → false
app(app(eq, app(s, x)), app(s, y)) → app(app(eq, x), y)
app(app(or, true), y) → true
app(app(or, false), y) → y
app(app(union, empty), h) → h
app(app(union, app(app(app(edge, x), y), i)), h) → app(app(app(edge, x), y), app(app(union, i), h))
app(app(app(app(reach, x), y), empty), h) → false
app(app(app(app(reach, x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_1, app(app(eq, x), u)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, true), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(app(if_reach_2, app(app(eq, y), v)), x), y), app(app(app(edge, u), v), i)), h)
app(app(app(app(app(if_reach_1, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(app(app(reach, x), y), i), app(app(app(edge, u), v), h))
app(app(app(app(app(if_reach_2, true), x), y), app(app(app(edge, u), v), i)), h) → true
app(app(app(app(app(if_reach_2, false), x), y), app(app(app(edge, u), v), i)), h) → app(app(or, app(app(app(app(reach, x), y), i), h)), app(app(app(app(reach, v), y), app(app(union, i), h)), empty))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)
The set Q consists of the following terms:
app(app(eq, 0), 0)
app(app(eq, 0), app(s, x0))
app(app(eq, app(s, x0)), 0)
app(app(eq, app(s, x0)), app(s, x1))
app(app(or, true), x0)
app(app(or, false), x0)
app(app(union, empty), x0)
app(app(union, app(app(app(edge, x0), x1), x2)), x3)
app(app(app(app(reach, x0), x1), empty), x2)
app(app(app(app(reach, x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_1, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, true), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(app(app(app(if_reach_2, false), x0), x1), app(app(app(edge, x2), x3), x4)), x5)
app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(filter, x0), nil)
app(app(filter, x0), app(app(cons, x1), x2))
app(app(app(app(filter2, true), x0), x1), x2)
app(app(app(app(filter2, false), x0), x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(43) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
The graph contains the following edges 1 > 1, 2 > 2
- APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The graph contains the following edges 1 > 1, 2 > 2
- APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The graph contains the following edges 1 >= 1, 2 > 2
- APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
The graph contains the following edges 2 > 2
- APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
The graph contains the following edges 2 >= 2
- APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
The graph contains the following edges 2 >= 2
(44) YES