YES Termination w.r.t. Q proof of Applicative_05_ReverseLastInit.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(app(compose, f), g), x) → app(g, app(f, x))
app(reverse, l) → app(app(reverse2, l), nil)
app(app(reverse2, nil), l) → l
app(app(reverse2, app(app(cons, x), xs)), l) → app(app(reverse2, xs), app(app(cons, x), l))
app(hd, app(app(cons, x), xs)) → x
app(tl, app(app(cons, x), xs)) → xs
lastapp(app(compose, hd), reverse)
initapp(app(compose, reverse), app(app(compose, tl), reverse))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
init > last > tl > hd > cons > nil > reverse2 > reverse > compose > app2

and weight map:

compose=1
reverse=4
reverse2=1
nil=2
cons=1
hd=1
tl=1
last=6
init=11
app_2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

app(app(app(compose, f), g), x) → app(g, app(f, x))
app(reverse, l) → app(app(reverse2, l), nil)
app(app(reverse2, nil), l) → l
app(app(reverse2, app(app(cons, x), xs)), l) → app(app(reverse2, xs), app(app(cons, x), l))
app(hd, app(app(cons, x), xs)) → x
app(tl, app(app(cons, x), xs)) → xs
lastapp(app(compose, hd), reverse)
initapp(app(compose, reverse), app(app(compose, tl), reverse))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES