YES
0 QTRS
↳1 Overlay + Local Confluence (⇔, 0 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 4 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 AND
↳7 QDP
↳8 UsableRulesProof (⇔, 0 ms)
↳9 QDP
↳10 QReductionProof (⇔, 0 ms)
↳11 QDP
↳12 QDPSizeChangeProof (⇔, 0 ms)
↳13 YES
↳14 QDP
↳15 UsableRulesProof (⇔, 0 ms)
↳16 QDP
↳17 QReductionProof (⇔, 0 ms)
↳18 QDP
↳19 QDPOrderProof (⇔, 0 ms)
↳20 QDP
↳21 Induction-Processor (⇒, 41 ms)
↳22 AND
↳23 QDP
↳24 DependencyGraphProof (⇔, 0 ms)
↳25 TRUE
↳26 QTRS
↳27 QTRSRRRProof (⇔, 0 ms)
↳28 QTRS
↳29 RisEmptyProof (⇔, 0 ms)
↳30 YES
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
ZERO(nil) → ZERO2(0, nil)
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO(cons(x, xs)) → SUB(x, x)
ZERO2(0, cons(x, xs)) → SUB(x, x)
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), nil) → ZERO(nil)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
From the DPs we obtained the following set of size-change graphs:
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ZERO2(0, cons(x, xs)) → ZERO(xs)
trivial
dummyConstant=1
cons_1=1
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
POL(0) = 0
POL(ZERO(x1)) = 1
POL(ZERO2(x1, x2)) = x1
POL(cons(x1, x2)) = 1
POL(s(x1)) = 1
POL(sub(x1, x2)) = 1
proof of internal # AProVE Commit ID: 3a20a6ef7432c3f292db1a8838479c42bf5e3b22 root 20240618 unpublished Partial correctness of the following Program [x, v5, v6, v7, v8, v9, v10, v11, v12, v13, x'', y', x1, x2] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a12](0, 0) -> true equal_sort[a12](0, s(v5)) -> false equal_sort[a12](s(v6), 0) -> false equal_sort[a12](s(v6), s(v7)) -> equal_sort[a12](v6, v7) equal_sort[a5](witness_sort[a5], witness_sort[a5]) -> true equal_sort[a19](cons(v8, v9), cons(v10, v11)) -> equal_sort[a12](v8, v10) and equal_sort[a5](v9, v11) equal_sort[a19](cons(v8, v9), witness_sort[a19]) -> false equal_sort[a19](witness_sort[a19], cons(v12, v13)) -> false equal_sort[a19](witness_sort[a19], witness_sort[a19]) -> true equal_sort[a16](witness_sort[a16], witness_sort[a16]) -> true sub'(0, 0) -> true sub'(s(x''), s(y')) -> sub'(x'', y') sub'(s(x1), 0) -> false sub'(0, s(x2)) -> true sub(0, 0) -> 0 sub(s(x''), s(y')) -> sub(x'', y') sub(s(x1), 0) -> s(x1) sub(0, s(x2)) -> 0 using the following formula: x:sort[a12].sub'(x, x)=true could be successfully shown: (0) Formula (1) Induction by data structure [EQUIVALENT, 0 ms] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT, 0 ms] (5) YES (6) Formula (7) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: Formula: x:sort[a12].sub'(x, x)=true There are no hypotheses. ---------------------------------------- (1) Induction by data structure (EQUIVALENT) Induction by data structure sort[a12] generates the following cases: 1. Base Case: Formula: sub'(0, 0)=true There are no hypotheses. 1. Step Case: Formula: n:sort[a12].sub'(s(n), s(n))=true Hypotheses: n:sort[a12].sub'(n, n)=true ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: sub'(0, 0)=true There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (5) YES ---------------------------------------- (6) Obligation: Formula: n:sort[a12].sub'(s(n), s(n))=true Hypotheses: n:sort[a12].sub'(n, n)=true ---------------------------------------- (7) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n:sort[a12].sub'(n, n)=true ---------------------------------------- (8) YES
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
sub'(0, 0) → true
sub'(s(x''), s(y')) → sub'(x'', y')
sub'(s(x1), 0) → false
sub'(0, s(x2)) → true
sub(0, 0) → 0
sub(s(x''), s(y')) → sub(x'', y')
sub(s(x1), 0) → s(x1)
sub(0, s(x2)) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a12](0, 0) → true
equal_sort[a12](0, s(v5)) → false
equal_sort[a12](s(v6), 0) → false
equal_sort[a12](s(v6), s(v7)) → equal_sort[a12](v6, v7)
equal_sort[a5](witness_sort[a5], witness_sort[a5]) → true
equal_sort[a19](cons(v8, v9), cons(v10, v11)) → and(equal_sort[a12](v8, v10), equal_sort[a5](v9, v11))
equal_sort[a19](cons(v8, v9), witness_sort[a19]) → false
equal_sort[a19](witness_sort[a19], cons(v12, v13)) → false
equal_sort[a19](witness_sort[a19], witness_sort[a19]) → true
equal_sort[a16](witness_sort[a16], witness_sort[a16]) → true
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 2
POL(and(x1, x2)) = 2 + 2·x1 + x2
POL(cons(x1, x2)) = 2 + 2·x1 + 2·x2
POL(equal_bool(x1, x2)) = 2 + x1 + x2
POL(equal_sort[a12](x1, x2)) = 2 + x1 + x2
POL(equal_sort[a16](x1, x2)) = 2 + 2·x1 + x2
POL(equal_sort[a19](x1, x2)) = 2 + 2·x1 + x2
POL(equal_sort[a5](x1, x2)) = 1 + x1 + 2·x2
POL(false) = 2
POL(isa_false(x1)) = 2 + 2·x1
POL(isa_true(x1)) = 1 + 2·x1
POL(not(x1)) = 2 + x1
POL(or(x1, x2)) = 2 + 2·x1 + x2
POL(s(x1)) = 1 + x1
POL(sub(x1, x2)) = 2 + 2·x1 + x2
POL(sub'(x1, x2)) = 2 + 2·x1 + x2
POL(true) = 1
POL(witness_sort[a16]) = 2
POL(witness_sort[a19]) = 2
POL(witness_sort[a5]) = 1
sub'(0, 0) → true
sub'(s(x''), s(y')) → sub'(x'', y')
sub'(s(x1), 0) → false
sub'(0, s(x2)) → true
sub(0, 0) → 0
sub(s(x''), s(y')) → sub(x'', y')
sub(s(x1), 0) → s(x1)
sub(0, s(x2)) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a12](0, 0) → true
equal_sort[a12](0, s(v5)) → false
equal_sort[a12](s(v6), 0) → false
equal_sort[a12](s(v6), s(v7)) → equal_sort[a12](v6, v7)
equal_sort[a5](witness_sort[a5], witness_sort[a5]) → true
equal_sort[a19](cons(v8, v9), cons(v10, v11)) → and(equal_sort[a12](v8, v10), equal_sort[a5](v9, v11))
equal_sort[a19](cons(v8, v9), witness_sort[a19]) → false
equal_sort[a19](witness_sort[a19], cons(v12, v13)) → false
equal_sort[a19](witness_sort[a19], witness_sort[a19]) → true
equal_sort[a16](witness_sort[a16], witness_sort[a16]) → true