(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
MINUS(s(x), y) → GT(s(x), y)
IF(true, x, y) → MINUS(x, y)
GCD(x, y) → IF1(ge(x, y), x, y)
GCD(x, y) → GE(x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(true, x, y) → GT(y, 0)
IF1(false, x, y) → GCD(y, x)
IF2(true, x, y) → GCD(minus(x, y), y)
IF2(true, x, y) → MINUS(x, y)
GT(s(x), s(y)) → GT(x, y)
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(x), s(y)) → GE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
R is empty.
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GT(s(x), s(y)) → GT(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
gt(0, y) → false
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
gt(0, y) → false
The set Q consists of the following terms:
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS(s(x), y) → IF(gt(s(x), y), x, y)
The graph contains the following edges 1 > 2, 2 >= 3
- IF(true, x, y) → MINUS(x, y)
The graph contains the following edges 2 >= 1, 3 >= 2
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(false, x, y) → GCD(y, x)
The TRS R consists of the following rules:
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gcd(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → gcd(y, x)
if2(true, x, y) → gcd(minus(x, y), y)
if2(false, x, y) → x
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(false, x, y) → GCD(y, x)
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
gcd(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(false, x, y) → GCD(y, x)
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(33) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
IF2(
true,
x,
y) →
GCD(
minus(
x,
y),
y) the following chains were created:
- We consider the chain IF1(true, x4, x5) → IF2(gt(x5, 0), x4, x5), IF2(true, x6, x7) → GCD(minus(x6, x7), x7) which results in the following constraint:
(1) (IF2(gt(x5, 0), x4, x5)=IF2(true, x6, x7) ⇒ IF2(true, x6, x7)≥GCD(minus(x6, x7), x7)) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (0=x42∧gt(x5, x42)=true ⇒ IF2(true, x4, x5)≥GCD(minus(x4, x5), x5)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gt(x5, x42)=true which results in the following new constraints:
(3) (true=true∧0=0 ⇒ IF2(true, x4, s(x44))≥GCD(minus(x4, s(x44)), s(x44))) |
(4) (gt(x46, x45)=true∧0=s(x45)∧(∀x47:gt(x46, x45)=true∧0=x45 ⇒ IF2(true, x47, x46)≥GCD(minus(x47, x46), x46)) ⇒ IF2(true, x4, s(x46))≥GCD(minus(x4, s(x46)), s(x46))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IF2(true, x4, s(x44))≥GCD(minus(x4, s(x44)), s(x44))) |
We solved constraint (4) using rules (I), (II).
For Pair
GCD(
x,
y) →
IF1(
ge(
x,
y),
x,
y) the following chains were created:
- We consider the chain IF2(true, x10, x11) → GCD(minus(x10, x11), x11), GCD(x12, x13) → IF1(ge(x12, x13), x12, x13) which results in the following constraint:
(1) (GCD(minus(x10, x11), x11)=GCD(x12, x13) ⇒ GCD(x12, x13)≥IF1(ge(x12, x13), x12, x13)) |
We simplified constraint (1) using rules (I), (II), (III), (IV) which results in the following new constraint:
(2) (GCD(x12, x11)≥IF1(ge(x12, x11), x12, x11)) |
- We consider the chain IF1(false, x18, x19) → GCD(x19, x18), GCD(x20, x21) → IF1(ge(x20, x21), x20, x21) which results in the following constraint:
(1) (GCD(x19, x18)=GCD(x20, x21) ⇒ GCD(x20, x21)≥IF1(ge(x20, x21), x20, x21)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (GCD(x19, x18)≥IF1(ge(x19, x18), x19, x18)) |
For Pair
IF1(
true,
x,
y) →
IF2(
gt(
y,
0),
x,
y) the following chains were created:
- We consider the chain GCD(x24, x25) → IF1(ge(x24, x25), x24, x25), IF1(true, x26, x27) → IF2(gt(x27, 0), x26, x27) which results in the following constraint:
(1) (IF1(ge(x24, x25), x24, x25)=IF1(true, x26, x27) ⇒ IF1(true, x26, x27)≥IF2(gt(x27, 0), x26, x27)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (ge(x24, x25)=true ⇒ IF1(true, x24, x25)≥IF2(gt(x25, 0), x24, x25)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x24, x25)=true which results in the following new constraints:
(3) (true=true ⇒ IF1(true, x48, 0)≥IF2(gt(0, 0), x48, 0)) |
(4) (ge(x51, x50)=true∧(ge(x51, x50)=true ⇒ IF1(true, x51, x50)≥IF2(gt(x50, 0), x51, x50)) ⇒ IF1(true, s(x51), s(x50))≥IF2(gt(s(x50), 0), s(x51), s(x50))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IF1(true, x48, 0)≥IF2(gt(0, 0), x48, 0)) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (ge(x51, x50)=true ⇒ IF1(true, x51, x50)≥IF2(gt(x50, 0), x51, x50)) with σ = [ ] which results in the following new constraint:
(6) (IF1(true, x51, x50)≥IF2(gt(x50, 0), x51, x50) ⇒ IF1(true, s(x51), s(x50))≥IF2(gt(s(x50), 0), s(x51), s(x50))) |
For Pair
IF1(
false,
x,
y) →
GCD(
y,
x) the following chains were created:
- We consider the chain GCD(x34, x35) → IF1(ge(x34, x35), x34, x35), IF1(false, x36, x37) → GCD(x37, x36) which results in the following constraint:
(1) (IF1(ge(x34, x35), x34, x35)=IF1(false, x36, x37) ⇒ IF1(false, x36, x37)≥GCD(x37, x36)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (ge(x34, x35)=false ⇒ IF1(false, x34, x35)≥GCD(x35, x34)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x34, x35)=false which results in the following new constraints:
(3) (false=false ⇒ IF1(false, 0, s(x53))≥GCD(s(x53), 0)) |
(4) (ge(x55, x54)=false∧(ge(x55, x54)=false ⇒ IF1(false, x55, x54)≥GCD(x54, x55)) ⇒ IF1(false, s(x55), s(x54))≥GCD(s(x54), s(x55))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IF1(false, 0, s(x53))≥GCD(s(x53), 0)) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (ge(x55, x54)=false ⇒ IF1(false, x55, x54)≥GCD(x54, x55)) with σ = [ ] which results in the following new constraint:
(6) (IF1(false, x55, x54)≥GCD(x54, x55) ⇒ IF1(false, s(x55), s(x54))≥GCD(s(x54), s(x55))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- IF2(true, x, y) → GCD(minus(x, y), y)
- (IF2(true, x4, s(x44))≥GCD(minus(x4, s(x44)), s(x44)))
- GCD(x, y) → IF1(ge(x, y), x, y)
- (GCD(x12, x11)≥IF1(ge(x12, x11), x12, x11))
- (GCD(x19, x18)≥IF1(ge(x19, x18), x19, x18))
- IF1(true, x, y) → IF2(gt(y, 0), x, y)
- (IF1(true, x48, 0)≥IF2(gt(0, 0), x48, 0))
- (IF1(true, x51, x50)≥IF2(gt(x50, 0), x51, x50) ⇒ IF1(true, s(x51), s(x50))≥IF2(gt(s(x50), 0), s(x51), s(x50)))
- IF1(false, x, y) → GCD(y, x)
- (IF1(false, 0, s(x53))≥GCD(s(x53), 0))
- (IF1(false, x55, x54)≥GCD(x54, x55) ⇒ IF1(false, s(x55), s(x54))≥GCD(s(x54), s(x55)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(GCD(x1, x2)) = x2
POL(IF1(x1, x2, x3)) = x3
POL(IF2(x1, x2, x3)) = -x1 + x3
POL(c) = -1
POL(false) = 1
POL(ge(x1, x2)) = 1 + x2
POL(gt(x1, x2)) = 0
POL(if(x1, x2, x3)) = 1 + x3
POL(minus(x1, x2)) = 1 + x2
POL(s(x1)) = 1 + x1
POL(true) = 0
The following pairs are in P
>:
IF1(false, x, y) → GCD(y, x)
The following pairs are in P
bound:
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(false, x, y) → GCD(y, x)
The following rules are usable:
false → gt(0, y)
true → gt(s(x), 0)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(35) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
GCD(
x,
y) →
IF1(
ge(
x,
y),
x,
y) at position [0] we obtained the following new rules [LPAR04]:
GCD(x0, 0) → IF1(true, x0, 0) → GCD(x0, 0) → IF1(true, x0, 0)
GCD(0, s(x0)) → IF1(false, 0, s(x0)) → GCD(0, s(x0)) → IF1(false, 0, s(x0))
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1)) → GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y) → GCD(minus(x, y), y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
GCD(x0, 0) → IF1(true, x0, 0)
GCD(0, s(x0)) → IF1(false, 0, s(x0))
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(37) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(x0, 0) → IF1(true, x0, 0)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(39) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF1(
true,
x,
y) →
IF2(
gt(
y,
0),
x,
y) at position [0] we obtained the following new rules [LPAR04]:
IF1(true, y0, 0) → IF2(false, y0, 0) → IF1(true, y0, 0) → IF2(false, y0, 0)
IF1(true, y0, s(x0)) → IF2(true, y0, s(x0)) → IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(x0, 0) → IF1(true, x0, 0)
IF2(true, x, y) → GCD(minus(x, y), y)
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, y0, 0) → IF2(false, y0, 0)
IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(41) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
IF2(true, x, y) → GCD(minus(x, y), y)
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(43) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF2(
true,
x,
y) →
GCD(
minus(
x,
y),
y) at position [0] we obtained the following new rules [LPAR04]:
IF2(true, s(x0), x1) → GCD(if(gt(s(x0), x1), x0, x1), x1) → IF2(true, s(x0), x1) → GCD(if(gt(s(x0), x1), x0, x1), x1)
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
IF2(true, s(x0), x1) → GCD(if(gt(s(x0), x1), x0, x1), x1)
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(45) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF1(
true,
y0,
s(
x0)) →
IF2(
true,
y0,
s(
x0)) we obtained the following new rules [LPAR04]:
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1)) → IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF2(true, s(x0), x1) → GCD(if(gt(s(x0), x1), x0, x1), x1)
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(47) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF2(
true,
s(
x0),
x1) →
GCD(
if(
gt(
s(
x0),
x1),
x0,
x1),
x1) we obtained the following new rules [LPAR04]:
IF2(true, s(z0), s(z1)) → GCD(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1)) → IF2(true, s(z0), s(z1)) → GCD(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1))
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
IF2(true, s(z0), s(z1)) → GCD(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(49) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF2(
true,
s(
z0),
s(
z1)) →
GCD(
if(
gt(
s(
z0),
s(
z1)),
z0,
s(
z1)),
s(
z1)) at position [0,0] we obtained the following new rules [LPAR04]:
IF2(true, s(z0), s(z1)) → GCD(if(gt(z0, z1), z0, s(z1)), s(z1)) → IF2(true, s(z0), s(z1)) → GCD(if(gt(z0, z1), z0, s(z1)), s(z1))
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
IF2(true, s(z0), s(z1)) → GCD(if(gt(z0, z1), z0, s(z1)), s(z1))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(51) Induction-Processor (SOUND transformation)
This DP could be deleted by the Induction-Processor:IF2(
true_renamed,
s(
z0'),
s(
z1')) →
GCD(
if(
gt(
z0',
z1'),
z0',
s(
z1')),
s(
z1'))
This order was computed:Polynomial interpretation [POLO]:
POL(0) = 0
POL(GCD(x1, x2)) = 1 + x1
POL(IF1(x1, x2, x3)) = 1 + x2
POL(IF2(x1, x2, x3)) = 1 + x2
POL(false_renamed) = 0
POL(ge(x1, x2)) = x2
POL(gt(x1, x2)) = 1 + x1 + x2
POL(if(x1, x2, x3)) = 1 + x2
POL(minus(x1, x2)) = x1
POL(s(x1)) = 1 + x1
POL(true_renamed) = 0
At least one of these decreasing rules is always used after the deleted DP:if(
false_renamed,
x5,
y2) →
0The following formula is valid:z0':sort[a23],z1':sort[a23].
if'(
gt(
z0' ,
z1' ),
z0' ,
s(
z1' ))=
trueThe transformed set:if'(
true_renamed,
x4,
y1) →
minus'(
x4,
y1)
if'(
false_renamed,
x5,
y2) →
trueminus'(
s(
x6),
y3) →
if'(
gt(
s(
x6),
y3),
x6,
y3)
minus'(
0,
v43) →
falsegt(
0,
y) →
false_renamedgt(
s(
x),
0) →
true_renamedge(
x',
0) →
true_renamedge(
0,
s(
x'')) →
false_renamedge(
s(
x2),
s(
y')) →
ge(
x2,
y')
gt(
s(
x3),
s(
y'')) →
gt(
x3,
y'')
if(
true_renamed,
x4,
y1) →
s(
minus(
x4,
y1))
if(
false_renamed,
x5,
y2) →
0minus(
s(
x6),
y3) →
if(
gt(
s(
x6),
y3),
x6,
y3)
minus(
0,
v43) →
0equal_bool(
true,
false) →
falseequal_bool(
false,
true) →
falseequal_bool(
true,
true) →
trueequal_bool(
false,
false) →
trueand(
true,
x) →
xand(
false,
x) →
falseor(
true,
x) →
trueor(
false,
x) →
xnot(
false) →
truenot(
true) →
falseisa_true(
true) →
trueisa_true(
false) →
falseisa_false(
true) →
falseisa_false(
false) →
trueequal_sort[a23](
0,
0) →
trueequal_sort[a23](
0,
s(
v45)) →
falseequal_sort[a23](
s(
v46),
0) →
falseequal_sort[a23](
s(
v46),
s(
v47)) →
equal_sort[a23](
v46,
v47)
equal_sort[a22](
false_renamed,
false_renamed) →
trueequal_sort[a22](
false_renamed,
true_renamed) →
falseequal_sort[a22](
true_renamed,
false_renamed) →
falseequal_sort[a22](
true_renamed,
true_renamed) →
trueequal_sort[a40](
witness_sort[a40],
witness_sort[a40]) →
trueThe proof given by the theorem prover:The following output was given by the internal theorem prover:
proof of internal
# AProVE Commit ID: 3a20a6ef7432c3f292db1a8838479c42bf5e3b22 root 20240618 unpublished
Partial correctness of the following Program
[x, v45, v46, v47, x5, y2, x6, y1, v43, y3, y, x3, y'', x', x'', x2, y']
equal_bool(true, false) -> false
equal_bool(false, true) -> false
equal_bool(true, true) -> true
equal_bool(false, false) -> true
true and x -> x
false and x -> false
true or x -> true
false or x -> x
not(false) -> true
not(true) -> false
isa_true(true) -> true
isa_true(false) -> false
isa_false(true) -> false
isa_false(false) -> true
equal_sort[a23](0, 0) -> true
equal_sort[a23](0, s(v45)) -> false
equal_sort[a23](s(v46), 0) -> false
equal_sort[a23](s(v46), s(v47)) -> equal_sort[a23](v46, v47)
equal_sort[a22](false_renamed, false_renamed) -> true
equal_sort[a22](false_renamed, true_renamed) -> false
equal_sort[a22](true_renamed, false_renamed) -> false
equal_sort[a22](true_renamed, true_renamed) -> true
equal_sort[a40](witness_sort[a40], witness_sort[a40]) -> true
if'(false_renamed, x5, y2) -> true
if'(true_renamed, s(x6), y1) -> if'(gt(s(x6), y1), x6, y1)
if'(true_renamed, 0, y1) -> false
minus'(0, v43) -> false
equal_sort[a22](gt(s(x6), y3), true_renamed) -> true | minus'(s(x6), y3) -> minus'(x6, y3)
equal_sort[a22](gt(s(x6), y3), true_renamed) -> false | minus'(s(x6), y3) -> true
gt(0, y) -> false_renamed
gt(s(x), 0) -> true_renamed
gt(s(x3), s(y'')) -> gt(x3, y'')
ge(x', 0) -> true_renamed
ge(0, s(x'')) -> false_renamed
ge(s(x2), s(y')) -> ge(x2, y')
if(false_renamed, x5, y2) -> 0
if(true_renamed, s(x6), y1) -> s(if(gt(s(x6), y1), x6, y1))
if(true_renamed, 0, y1) -> s(0)
minus(0, v43) -> 0
equal_sort[a22](gt(s(x6), y3), true_renamed) -> true | minus(s(x6), y3) -> s(minus(x6, y3))
equal_sort[a22](gt(s(x6), y3), true_renamed) -> false | minus(s(x6), y3) -> 0
using the following formula:
z0':sort[a23],z1':sort[a23].if'(gt(z0', z1'), z0', s(z1'))=true
could be successfully shown:
(0) Formula
(1) Induction by algorithm [EQUIVALENT, 0 ms]
(2) AND
(3) Formula
(4) Symbolic evaluation [EQUIVALENT, 0 ms]
(5) YES
(6) Formula
(7) Symbolic evaluation [EQUIVALENT, 0 ms]
(8) Formula
(9) Induction by data structure [EQUIVALENT, 0 ms]
(10) AND
(11) Formula
(12) Symbolic evaluation [EQUIVALENT, 0 ms]
(13) YES
(14) Formula
(15) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms]
(16) YES
(17) Formula
(18) Symbolic evaluation [EQUIVALENT, 0 ms]
(19) Formula
(20) Hypothesis Lifting [EQUIVALENT, 0 ms]
(21) Formula
(22) Inverse Substitution [SOUND, 0 ms]
(23) Formula
(24) Inverse Substitution [SOUND, 0 ms]
(25) Formula
(26) Induction by algorithm [EQUIVALENT, 0 ms]
(27) AND
(28) Formula
(29) Symbolic evaluation [EQUIVALENT, 0 ms]
(30) YES
(31) Formula
(32) Symbolic evaluation [EQUIVALENT, 0 ms]
(33) YES
(34) Formula
(35) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms]
(36) YES
----------------------------------------
(0)
Obligation:
Formula:
z0':sort[a23],z1':sort[a23].if'(gt(z0', z1'), z0', s(z1'))=true
There are no hypotheses.
----------------------------------------
(1) Induction by algorithm (EQUIVALENT)
Induction by algorithm gt(z0', z1') generates the following cases:
1. Base Case:
Formula:
y:sort[a23].if'(gt(0, y), 0, s(y))=true
There are no hypotheses.
2. Base Case:
Formula:
x:sort[a23].if'(gt(s(x), 0), s(x), s(0))=true
There are no hypotheses.
1. Step Case:
Formula:
x3:sort[a23],y'':sort[a23].if'(gt(s(x3), s(y'')), s(x3), s(s(y'')))=true
Hypotheses:
x3:sort[a23],y'':sort[a23].if'(gt(x3, y''), x3, s(y''))=true
----------------------------------------
(2)
Complex Obligation (AND)
----------------------------------------
(3)
Obligation:
Formula:
y:sort[a23].if'(gt(0, y), 0, s(y))=true
There are no hypotheses.
----------------------------------------
(4) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(5)
YES
----------------------------------------
(6)
Obligation:
Formula:
x:sort[a23].if'(gt(s(x), 0), s(x), s(0))=true
There are no hypotheses.
----------------------------------------
(7) Symbolic evaluation (EQUIVALENT)
Could be shown by simple symbolic evaluation.
----------------------------------------
(8)
Obligation:
Formula:
x:sort[a23].if'(gt(x, 0), x, s(0))=true
There are no hypotheses.
----------------------------------------
(9) Induction by data structure (EQUIVALENT)
Induction by data structure sort[a23] generates the following cases:
1. Base Case:
Formula:
if'(gt(0, 0), 0, s(0))=true
There are no hypotheses.
1. Step Case:
Formula:
n:sort[a23].if'(gt(s(n), 0), s(n), s(0))=true
Hypotheses:
n:sort[a23].if'(gt(n, 0), n, s(0))=true
----------------------------------------
(10)
Complex Obligation (AND)
----------------------------------------
(11)
Obligation:
Formula:
if'(gt(0, 0), 0, s(0))=true
There are no hypotheses.
----------------------------------------
(12) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(13)
YES
----------------------------------------
(14)
Obligation:
Formula:
n:sort[a23].if'(gt(s(n), 0), s(n), s(0))=true
Hypotheses:
n:sort[a23].if'(gt(n, 0), n, s(0))=true
----------------------------------------
(15) Symbolic evaluation under hypothesis (EQUIVALENT)
Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses:
n:sort[a23].if'(gt(n, 0), n, s(0))=true
----------------------------------------
(16)
YES
----------------------------------------
(17)
Obligation:
Formula:
x3:sort[a23],y'':sort[a23].if'(gt(s(x3), s(y'')), s(x3), s(s(y'')))=true
Hypotheses:
x3:sort[a23],y'':sort[a23].if'(gt(x3, y''), x3, s(y''))=true
----------------------------------------
(18) Symbolic evaluation (EQUIVALENT)
Could be shown by simple symbolic evaluation.
----------------------------------------
(19)
Obligation:
Formula:
x3:sort[a23],y'':sort[a23].if'(gt(x3, y''), s(x3), s(s(y'')))=true
Hypotheses:
x3:sort[a23],y'':sort[a23].if'(gt(x3, y''), x3, s(y''))=true
----------------------------------------
(20) Hypothesis Lifting (EQUIVALENT)
Formula could be generalised by hypothesis lifting to the following new obligation:
Formula:
x3:sort[a23],y'':sort[a23].(if'(gt(x3, y''), x3, s(y''))=true->if'(gt(x3, y''), s(x3), s(s(y'')))=true)
There are no hypotheses.
----------------------------------------
(21)
Obligation:
Formula:
x3:sort[a23],y'':sort[a23].(if'(gt(x3, y''), x3, s(y''))=true->if'(gt(x3, y''), s(x3), s(s(y'')))=true)
There are no hypotheses.
----------------------------------------
(22) Inverse Substitution (SOUND)
The formula could be generalised by inverse substitution to:
n:sort[a22],x3:sort[a23],y'':sort[a23].(if'(n, x3, s(y''))=true->if'(n, s(x3), s(s(y'')))=true)
Inverse substitution used:
[gt(x3, y'')/n]
----------------------------------------
(23)
Obligation:
Formula:
n:sort[a22],x3:sort[a23],y'':sort[a23].(if'(n, x3, s(y''))=true->if'(n, s(x3), s(s(y'')))=true)
There are no hypotheses.
----------------------------------------
(24) Inverse Substitution (SOUND)
The formula could be generalised by inverse substitution to:
n:sort[a22],x3:sort[a23],n':sort[a23].(if'(n, x3, n')=true->if'(n, s(x3), s(n'))=true)
Inverse substitution used:
[s(y'')/n']
----------------------------------------
(25)
Obligation:
Formula:
n:sort[a22],x3:sort[a23],n':sort[a23].(if'(n, x3, n')=true->if'(n, s(x3), s(n'))=true)
There are no hypotheses.
----------------------------------------
(26) Induction by algorithm (EQUIVALENT)
Induction by algorithm if'(n, x3, n') generates the following cases:
1. Base Case:
Formula:
x5:sort[a23],y2:sort[a23].(if'(false_renamed, x5, y2)=true->if'(false_renamed, s(x5), s(y2))=true)
There are no hypotheses.
2. Base Case:
Formula:
y1:sort[a23].(if'(true_renamed, 0, y1)=true->if'(true_renamed, s(0), s(y1))=true)
There are no hypotheses.
1. Step Case:
Formula:
x6:sort[a23],y1:sort[a23].(if'(true_renamed, s(x6), y1)=true->if'(true_renamed, s(s(x6)), s(y1))=true)
Hypotheses:
x6:sort[a23],y1:sort[a23].(if'(gt(s(x6), y1), x6, y1)=true->if'(gt(s(x6), y1), s(x6), s(y1))=true)
----------------------------------------
(27)
Complex Obligation (AND)
----------------------------------------
(28)
Obligation:
Formula:
x5:sort[a23],y2:sort[a23].(if'(false_renamed, x5, y2)=true->if'(false_renamed, s(x5), s(y2))=true)
There are no hypotheses.
----------------------------------------
(29) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(30)
YES
----------------------------------------
(31)
Obligation:
Formula:
y1:sort[a23].(if'(true_renamed, 0, y1)=true->if'(true_renamed, s(0), s(y1))=true)
There are no hypotheses.
----------------------------------------
(32) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(33)
YES
----------------------------------------
(34)
Obligation:
Formula:
x6:sort[a23],y1:sort[a23].(if'(true_renamed, s(x6), y1)=true->if'(true_renamed, s(s(x6)), s(y1))=true)
Hypotheses:
x6:sort[a23],y1:sort[a23].(if'(gt(s(x6), y1), x6, y1)=true->if'(gt(s(x6), y1), s(x6), s(y1))=true)
----------------------------------------
(35) Symbolic evaluation under hypothesis (EQUIVALENT)
Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses:
x6:sort[a23],y1:sort[a23].(if'(gt(s(x6), y1), x6, y1)=true->if'(gt(s(x6), y1), s(x6), s(y1))=true)
----------------------------------------
(36)
YES
(52) Complex Obligation (AND)
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
The TRS R consists of the following rules:
gt(0, y) → false
gt(s(x), 0) → true
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
The set Q consists of the following terms:
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(54) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(55) TRUE
(56) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
if'(true_renamed, x4, y1) → minus'(x4, y1)
if'(false_renamed, x5, y2) → true
minus'(s(x6), y3) → if'(gt(s(x6), y3), x6, y3)
minus'(0, v43) → false
gt(0, y) → false_renamed
gt(s(x), 0) → true_renamed
ge(x', 0) → true_renamed
ge(0, s(x'')) → false_renamed
ge(s(x2), s(y')) → ge(x2, y')
gt(s(x3), s(y'')) → gt(x3, y'')
if(true_renamed, x4, y1) → s(minus(x4, y1))
if(false_renamed, x5, y2) → 0
minus(s(x6), y3) → if(gt(s(x6), y3), x6, y3)
minus(0, v43) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a23](0, 0) → true
equal_sort[a23](0, s(v45)) → false
equal_sort[a23](s(v46), 0) → false
equal_sort[a23](s(v46), s(v47)) → equal_sort[a23](v46, v47)
equal_sort[a22](false_renamed, false_renamed) → true
equal_sort[a22](false_renamed, true_renamed) → false
equal_sort[a22](true_renamed, false_renamed) → false
equal_sort[a22](true_renamed, true_renamed) → true
equal_sort[a40](witness_sort[a40], witness_sort[a40]) → true
Q is empty.
(57) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Combined order from the following AFS and order.
if'(
x1,
x2,
x3) =
if'(
x1,
x2,
x3)
true_renamed =
true_renamed
minus'(
x1,
x2) =
minus'(
x1,
x2)
false_renamed =
false_renamed
true =
true
s(
x1) =
s(
x1)
gt(
x1,
x2) =
gt(
x1,
x2)
0 =
0
false =
false
ge(
x1,
x2) =
ge(
x1,
x2)
if(
x1,
x2,
x3) =
if(
x1,
x2,
x3)
minus(
x1,
x2) =
minus(
x1,
x2)
equal_bool(
x1,
x2) =
equal_bool(
x1,
x2)
and(
x1,
x2) =
and(
x1,
x2)
or(
x1,
x2) =
or(
x1,
x2)
not(
x1) =
not(
x1)
isa_true(
x1) =
x1
isa_false(
x1) =
isa_false(
x1)
equal_sort[a23](
x1,
x2) =
equal_sort[a23](
x1,
x2)
equal_sort[a22](
x1,
x2) =
equal_sort[a22](
x1,
x2)
equal_sort[a40](
x1,
x2) =
equal_sort[a40](
x1,
x2)
witness_sort[a40] =
witness_sort[a40]
Recursive path order with status [RPO].
Quasi-Precedence:
[if'3, minus'2] > [true, false] > [s1, gt2]
[falserenamed, 0] > truerenamed > [if3, minus2] > [s1, gt2]
[falserenamed, 0] > [true, false] > [s1, gt2]
ge2 > truerenamed > [if3, minus2] > [s1, gt2]
equalbool2 > [true, false] > [s1, gt2]
and2 > [s1, gt2]
or2 > [s1, gt2]
not1 > [s1, gt2]
isafalse1 > [true, false] > [s1, gt2]
equalsort[a23]2 > [true, false] > [s1, gt2]
equalsort[a22]2 > [true, false] > [s1, gt2]
equalsort[a40]2 > [true, false] > [s1, gt2]
witnesssort[a40] > [s1, gt2]
Status:
if'3: [2,3,1]
truerenamed: multiset
minus'2: [1,2]
falserenamed: multiset
true: multiset
s1: multiset
gt2: [2,1]
0: multiset
false: multiset
ge2: [1,2]
if3: [3,2,1]
minus2: [2,1]
equalbool2: [1,2]
and2: multiset
or2: multiset
not1: multiset
isafalse1: [1]
equalsort[a23]2: [1,2]
equalsort[a22]2: multiset
equalsort[a40]2: multiset
witnesssort[a40]: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
if'(true_renamed, x4, y1) → minus'(x4, y1)
if'(false_renamed, x5, y2) → true
minus'(s(x6), y3) → if'(gt(s(x6), y3), x6, y3)
minus'(0, v43) → false
gt(0, y) → false_renamed
gt(s(x), 0) → true_renamed
ge(x', 0) → true_renamed
ge(0, s(x'')) → false_renamed
ge(s(x2), s(y')) → ge(x2, y')
gt(s(x3), s(y'')) → gt(x3, y'')
if(true_renamed, x4, y1) → s(minus(x4, y1))
if(false_renamed, x5, y2) → 0
minus(s(x6), y3) → if(gt(s(x6), y3), x6, y3)
minus(0, v43) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a23](0, 0) → true
equal_sort[a23](0, s(v45)) → false
equal_sort[a23](s(v46), 0) → false
equal_sort[a23](s(v46), s(v47)) → equal_sort[a23](v46, v47)
equal_sort[a22](false_renamed, false_renamed) → true
equal_sort[a22](false_renamed, true_renamed) → false
equal_sort[a22](true_renamed, false_renamed) → false
equal_sort[a22](true_renamed, true_renamed) → true
equal_sort[a40](witness_sort[a40], witness_sort[a40]) → true
(58) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
isa_true(true) → true
isa_true(false) → false
Q is empty.
(59) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Knuth-Bendix order [KBO] with precedence:
isatrue1 > false > true
and weight map:
true=1
false=1
isa_true_1=0
The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isa_true(true) → true
isa_true(false) → false
(60) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(61) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(62) YES