YES Termination w.r.t. Q proof of AProVE_07_wiehe03.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)
SUM(cons(x, cons(y, l))) → SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) → PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) → SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) → APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) → SUM(cons(x, cons(y, k)))
SUM(plus(cons(0, x), cons(y, l))) → PRED(sum(cons(s(x), cons(y, l))))
SUM(plus(cons(0, x), cons(y, l))) → SUM(cons(s(x), cons(y, l)))
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(s(x), s(y)) → IF(gt(x, y), x, y)
PLUS(s(x), s(y)) → GT(x, y)
PLUS(s(x), s(y)) → IF(not(gt(x, y)), id(x), id(y))
PLUS(s(x), s(y)) → NOT(gt(x, y))
PLUS(s(x), s(y)) → ID(x)
PLUS(s(x), s(y)) → ID(y)
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(s(x), x) → IF(gt(x, x), id(x), id(x))
PLUS(s(x), x) → GT(x, x)
PLUS(s(x), x) → ID(x)
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(id(x), s(y)) → IF(gt(s(y), y), y, s(y))
PLUS(id(x), s(y)) → GT(s(y), y)
NOT(x) → IF(x, false, true)
GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 17 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GT(s(x), s(y)) → GT(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(9) YES

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(PLUS(x1, x2)) = 0A + 1A·x1 + 0A·x2

POL(s(x1)) = 0A + 2A·x1

POL(if(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 0A·x3

POL(gt(x1, x2)) = -I + 0A·x1 + -I·x2

POL(id(x1)) = 0A + 1A·x1

POL(not(x1)) = 0A + 1A·x1

POL(zero) = 2A

POL(true) = 0A

POL(false) = 0A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( PLUS(x1, x2) ) = x1 + 1

POL( if(x1, ..., x3) ) = 2x1 + x2 + x3

POL( gt(x1, x2) ) = max{0, -1}

POL( s(x1) ) = 2x1 + 2

POL( zero ) = 0

POL( true ) = 0

POL( false ) = 0

POL( id(x1) ) = x1 + 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
id(x) → x
if(true, x, y) → x
if(false, x, y) → y

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( PLUS(x1, x2) ) = 2x1 + 2

POL( if(x1, ..., x3) ) = x1 + x2 + x3

POL( gt(x1, x2) ) = 0

POL( s(x1) ) = 2x1 + 1

POL( zero ) = 0

POL( true ) = 0

POL( false ) = 0

POL( id(x1) ) = x1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
id(x) → x
if(true, x, y) → x
if(false, x, y) → y

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) YES

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(cons(x, l), k) → APP(l, k)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP(cons(x, l), k) → APP(l, k)
    The graph contains the following edges 1 > 1, 2 >= 2

(23) YES

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(x, cons(y, l))) → SUM(cons(plus(x, y), l))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


SUM(cons(x, cons(y, l))) → SUM(cons(plus(x, y), l))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  x1
cons(x1, x2)  =  cons(x2)

Knuth-Bendix order [KBO] with precedence:
trivial

and weight map:

dummyConstant=1
cons_1=1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) YES

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUM(app(l, cons(x, cons(y, k)))) → SUM(app(l, sum(cons(x, cons(y, k)))))

The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


SUM(app(l, cons(x, cons(y, k)))) → SUM(app(l, sum(cons(x, cons(y, k)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SUM(x1)  =  x1
app(x1, x2)  =  app(x1, x2)
cons(x1, x2)  =  cons(x2)
sum(x1)  =  sum
nil  =  nil

Knuth-Bendix order [KBO] with precedence:
app2 > cons1

and weight map:

sum=5
cons_1=3
app_2=1
nil=1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) → pred(sum(cons(s(x), cons(y, l))))
pred(cons(s(x), nil)) → cons(x, nil)
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) YES