(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
LT(s(x), s(y)) → LT(x, y)
REVERSE(l) → REV(0, l, nil, l)
REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
REV(x, l, accu, orig) → LT(x, length(orig))
REV(x, l, accu, orig) → LENGTH(orig)
IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
IF(true, x, l, accu, orig) → TAIL(l)
IF(true, x, l, accu, orig) → HEAD(l)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
R is empty.
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LT(s(x), s(y)) → LT(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LT(s(x), s(y)) → LT(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
R is empty.
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(x, l)) → LENGTH(l)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(cons(x, l)) → LENGTH(l)
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
The TRS R consists of the following rules:
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
head(cons(x, l)) → x
head(nil) → undefined
tail(nil) → nil
tail(cons(x, l)) → l
reverse(l) → rev(0, l, nil, l)
rev(x, l, accu, orig) → if(lt(x, length(orig)), x, l, accu, orig)
if(true, x, l, accu, orig) → rev(s(x), tail(l), cons(head(l), accu), orig)
if(false, x, l, accu, orig) → accu
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, l)) → l
head(cons(x, l)) → x
head(nil) → undefined
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
reverse(x0)
rev(x0, x1, x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, l)) → l
head(cons(x, l)) → x
head(nil) → undefined
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(26) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
REV(
x,
l,
accu,
orig) →
IF(
lt(
x,
length(
orig)),
x,
l,
accu,
orig) the following chains were created:
- We consider the chain IF(true, x4, x5, x6, x7) → REV(s(x4), tail(x5), cons(head(x5), x6), x7), REV(x8, x9, x10, x11) → IF(lt(x8, length(x11)), x8, x9, x10, x11) which results in the following constraint:
(1) (REV(s(x4), tail(x5), cons(head(x5), x6), x7)=REV(x8, x9, x10, x11) ⇒ REV(x8, x9, x10, x11)≥IF(lt(x8, length(x11)), x8, x9, x10, x11)) |
We simplified constraint (1) using rules (I), (II), (III), (IV) which results in the following new constraint:
(2) (REV(s(x4), x9, x10, x7)≥IF(lt(s(x4), length(x7)), s(x4), x9, x10, x7)) |
For Pair
IF(
true,
x,
l,
accu,
orig) →
REV(
s(
x),
tail(
l),
cons(
head(
l),
accu),
orig) the following chains were created:
- We consider the chain REV(x12, x13, x14, x15) → IF(lt(x12, length(x15)), x12, x13, x14, x15), IF(true, x16, x17, x18, x19) → REV(s(x16), tail(x17), cons(head(x17), x18), x19) which results in the following constraint:
(1) (IF(lt(x12, length(x15)), x12, x13, x14, x15)=IF(true, x16, x17, x18, x19) ⇒ IF(true, x16, x17, x18, x19)≥REV(s(x16), tail(x17), cons(head(x17), x18), x19)) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (length(x15)=x24∧lt(x12, x24)=true ⇒ IF(true, x12, x13, x14, x15)≥REV(s(x12), tail(x13), cons(head(x13), x14), x15)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on lt(x12, x24)=true which results in the following new constraints:
(3) (true=true∧length(x15)=s(x26) ⇒ IF(true, 0, x13, x14, x15)≥REV(s(0), tail(x13), cons(head(x13), x14), x15)) |
(4) (lt(x28, x27)=true∧length(x15)=s(x27)∧(∀x29,x30,x31:lt(x28, x27)=true∧length(x29)=x27 ⇒ IF(true, x28, x30, x31, x29)≥REV(s(x28), tail(x30), cons(head(x30), x31), x29)) ⇒ IF(true, s(x28), x13, x14, x15)≥REV(s(s(x28)), tail(x13), cons(head(x13), x14), x15)) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (length(x15)=s(x26) ⇒ IF(true, 0, x13, x14, x15)≥REV(s(0), tail(x13), cons(head(x13), x14), x15)) |
We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on length(x15)=s(x27) which results in the following new constraint:
(6) (s(length(x37))=s(x27)∧lt(x28, x27)=true∧(∀x29,x30,x31:lt(x28, x27)=true∧length(x29)=x27 ⇒ IF(true, x28, x30, x31, x29)≥REV(s(x28), tail(x30), cons(head(x30), x31), x29))∧(∀x39,x40,x41,x42,x43,x44,x45:length(x37)=s(x39)∧lt(x40, x39)=true∧(∀x41,x42,x43:lt(x40, x39)=true∧length(x41)=x39 ⇒ IF(true, x40, x42, x43, x41)≥REV(s(x40), tail(x42), cons(head(x42), x43), x41)) ⇒ IF(true, s(x40), x44, x45, x37)≥REV(s(s(x40)), tail(x44), cons(head(x44), x45), x37)) ⇒ IF(true, s(x28), x13, x14, cons(x38, x37))≥REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) |
We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on length(x15)=s(x26) which results in the following new constraint:
(7) (s(length(x32))=s(x26)∧(∀x34,x35,x36:length(x32)=s(x34) ⇒ IF(true, 0, x35, x36, x32)≥REV(s(0), tail(x35), cons(head(x35), x36), x32)) ⇒ IF(true, 0, x13, x14, cons(x33, x32))≥REV(s(0), tail(x13), cons(head(x13), x14), cons(x33, x32))) |
We simplified constraint (7) using rules (I), (II), (IV) which results in the following new constraint:
(8) (IF(true, 0, x13, x14, cons(x33, x32))≥REV(s(0), tail(x13), cons(head(x13), x14), cons(x33, x32))) |
We simplified constraint (6) using rules (I), (II) which results in the following new constraint:
(9) (length(x37)=x27∧lt(x28, x27)=true∧(∀x29,x30,x31:lt(x28, x27)=true∧length(x29)=x27 ⇒ IF(true, x28, x30, x31, x29)≥REV(s(x28), tail(x30), cons(head(x30), x31), x29))∧(∀x39,x40,x41,x42,x43,x44,x45:length(x37)=s(x39)∧lt(x40, x39)=true∧(∀x41,x42,x43:lt(x40, x39)=true∧length(x41)=x39 ⇒ IF(true, x40, x42, x43, x41)≥REV(s(x40), tail(x42), cons(head(x42), x43), x41)) ⇒ IF(true, s(x40), x44, x45, x37)≥REV(s(s(x40)), tail(x44), cons(head(x44), x45), x37)) ⇒ IF(true, s(x28), x13, x14, cons(x38, x37))≥REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) |
We simplified constraint (9) using rule (VI) where we applied the induction hypothesis (∀x29,x30,x31:lt(x28, x27)=true∧length(x29)=x27 ⇒ IF(true, x28, x30, x31, x29)≥REV(s(x28), tail(x30), cons(head(x30), x31), x29)) with σ = [x29 / x37, x30 / x13, x31 / x14] which results in the following new constraint:
(10) (IF(true, x28, x13, x14, x37)≥REV(s(x28), tail(x13), cons(head(x13), x14), x37)∧(∀x39,x40,x41,x42,x43,x44,x45:length(x37)=s(x39)∧lt(x40, x39)=true∧(∀x41,x42,x43:lt(x40, x39)=true∧length(x41)=x39 ⇒ IF(true, x40, x42, x43, x41)≥REV(s(x40), tail(x42), cons(head(x42), x43), x41)) ⇒ IF(true, s(x40), x44, x45, x37)≥REV(s(s(x40)), tail(x44), cons(head(x44), x45), x37)) ⇒ IF(true, s(x28), x13, x14, cons(x38, x37))≥REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) |
We simplified constraint (10) using rule (IV) which results in the following new constraint:
(11) (IF(true, x28, x13, x14, x37)≥REV(s(x28), tail(x13), cons(head(x13), x14), x37) ⇒ IF(true, s(x28), x13, x14, cons(x38, x37))≥REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
- (REV(s(x4), x9, x10, x7)≥IF(lt(s(x4), length(x7)), s(x4), x9, x10, x7))
- IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
- (IF(true, 0, x13, x14, cons(x33, x32))≥REV(s(0), tail(x13), cons(head(x13), x14), cons(x33, x32)))
- (IF(true, x28, x13, x14, x37)≥REV(s(x28), tail(x13), cons(head(x13), x14), x37) ⇒ IF(true, s(x28), x13, x14, cons(x38, x37))≥REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 1
POL(IF(x1, x2, x3, x4, x5)) = -1 - x2 + x5
POL(REV(x1, x2, x3, x4)) = -x1 + x4
POL(c) = -1
POL(cons(x1, x2)) = 1 + x1 + x2
POL(false) = 1
POL(head(x1)) = 0
POL(length(x1)) = 1
POL(lt(x1, x2)) = 1 + x2
POL(nil) = 0
POL(s(x1)) = 1 + x1
POL(tail(x1)) = 0
POL(true) = 1
POL(undefined) = 1
The following pairs are in P
>:
REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
The following pairs are in P
bound:
IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
There are no usable rules
(27) Complex Obligation (AND)
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, l, accu, orig) → REV(s(x), tail(l), cons(head(l), accu), orig)
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, l)) → l
head(cons(x, l)) → x
head(nil) → undefined
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(30) TRUE
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV(x, l, accu, orig) → IF(lt(x, length(orig)), x, l, accu, orig)
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, l)) → l
head(cons(x, l)) → x
head(nil) → undefined
length(nil) → 0
length(cons(x, l)) → s(length(l))
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
The set Q consists of the following terms:
length(nil)
length(cons(x0, x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
head(cons(x0, x1))
head(nil)
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(32) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(33) TRUE