(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
prime(x) → test(x, s(s(0)))
test(x, y) → if1(gt(x, y), x, y)
if1(true, x, y) → if2(divides(x, y), x, y)
if1(false, x, y) → true
if2(true, x, y) → false
if2(false, x, y) → test(x, s(y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
prime(x) → test(x, s(s(0)))
test(x, y) → if1(gt(x, y), x, y)
if1(true, x, y) → if2(divides(x, y), x, y)
if1(false, x, y) → true
if2(true, x, y) → false
if2(false, x, y) → test(x, s(y))
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
DIVIDES(x, y) → DIV(x, y, y)
DIV(s(x), 0, s(z)) → DIV(s(x), s(z), s(z))
DIV(s(x), s(y), z) → DIV(x, y, z)
PRIME(x) → TEST(x, s(s(0)))
TEST(x, y) → IF1(gt(x, y), x, y)
TEST(x, y) → GT(x, y)
IF1(true, x, y) → IF2(divides(x, y), x, y)
IF1(true, x, y) → DIVIDES(x, y)
IF2(false, x, y) → TEST(x, s(y))
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
prime(x) → test(x, s(s(0)))
test(x, y) → if1(gt(x, y), x, y)
if1(true, x, y) → if2(divides(x, y), x, y)
if1(false, x, y) → true
if2(true, x, y) → false
if2(false, x, y) → test(x, s(y))
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x), s(y), z) → DIV(x, y, z)
DIV(s(x), 0, s(z)) → DIV(s(x), s(z), s(z))
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
prime(x) → test(x, s(s(0)))
test(x, y) → if1(gt(x, y), x, y)
if1(true, x, y) → if2(divides(x, y), x, y)
if1(false, x, y) → true
if2(true, x, y) → false
if2(false, x, y) → test(x, s(y))
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x), s(y), z) → DIV(x, y, z)
DIV(s(x), 0, s(z)) → DIV(s(x), s(z), s(z))
R is empty.
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x), s(y), z) → DIV(x, y, z)
DIV(s(x), 0, s(z)) → DIV(s(x), s(z), s(z))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DIV(s(x), s(y), z) → DIV(x, y, z)
The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3
- DIV(s(x), 0, s(z)) → DIV(s(x), s(z), s(z))
The graph contains the following edges 1 >= 1, 3 >= 2, 3 >= 3
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
prime(x) → test(x, s(s(0)))
test(x, y) → if1(gt(x, y), x, y)
if1(true, x, y) → if2(divides(x, y), x, y)
if1(false, x, y) → true
if2(true, x, y) → false
if2(false, x, y) → test(x, s(y))
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
R is empty.
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GT(s(x), s(y)) → GT(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF1(true, x, y) → IF2(divides(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
The TRS R consists of the following rules:
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
prime(x) → test(x, s(s(0)))
test(x, y) → if1(gt(x, y), x, y)
if1(true, x, y) → if2(divides(x, y), x, y)
if1(false, x, y) → true
if2(true, x, y) → false
if2(false, x, y) → test(x, s(y))
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF1(true, x, y) → IF2(divides(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
The TRS R consists of the following rules:
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
prime(x0)
test(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF1(true, x, y) → IF2(divides(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
The TRS R consists of the following rules:
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(26) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF1(
true,
x,
y) →
IF2(
divides(
x,
y),
x,
y) at position [0] we obtained the following new rules [LPAR04]:
IF1(true, x, y) → IF2(div(x, y, y), x, y) → IF1(true, x, y) → IF2(div(x, y, y), x, y)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
IF1(true, x, y) → IF2(div(x, y, y), x, y)
The TRS R consists of the following rules:
divides(x, y) → div(x, y, y)
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(28) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
IF1(true, x, y) → IF2(div(x, y, y), x, y)
The TRS R consists of the following rules:
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
divides(x0, x1)
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(30) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
divides(x0, x1)
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
IF1(true, x, y) → IF2(div(x, y, y), x, y)
The TRS R consists of the following rules:
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(32) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
TEST(
x,
y) →
IF1(
gt(
x,
y),
x,
y) the following chains were created:
- We consider the chain IF2(false, x2, x3) → TEST(x2, s(x3)), TEST(x4, x5) → IF1(gt(x4, x5), x4, x5) which results in the following constraint:
(1) (TEST(x2, s(x3))=TEST(x4, x5) ⇒ TEST(x4, x5)≥IF1(gt(x4, x5), x4, x5)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (TEST(x2, s(x3))≥IF1(gt(x2, s(x3)), x2, s(x3))) |
For Pair
IF2(
false,
x,
y) →
TEST(
x,
s(
y)) the following chains were created:
- We consider the chain IF1(true, x12, x13) → IF2(div(x12, x13, x13), x12, x13), IF2(false, x14, x15) → TEST(x14, s(x15)) which results in the following constraint:
(1) (IF2(div(x12, x13, x13), x12, x13)=IF2(false, x14, x15) ⇒ IF2(false, x14, x15)≥TEST(x14, s(x15))) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (x13=x24∧div(x12, x13, x24)=false ⇒ IF2(false, x12, x13)≥TEST(x12, s(x13))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on div(x12, x13, x24)=false which results in the following new constraints:
(3) (false=false∧s(x27)=x26 ⇒ IF2(false, 0, s(x27))≥TEST(0, s(s(x27)))) |
(4) (div(s(x29), s(x28), s(x28))=false∧0=s(x28)∧(div(s(x29), s(x28), s(x28))=false∧s(x28)=s(x28) ⇒ IF2(false, s(x29), s(x28))≥TEST(s(x29), s(s(x28)))) ⇒ IF2(false, s(x29), 0)≥TEST(s(x29), s(0))) |
(5) (div(x32, x31, x30)=false∧s(x31)=x30∧(div(x32, x31, x30)=false∧x31=x30 ⇒ IF2(false, x32, x31)≥TEST(x32, s(x31))) ⇒ IF2(false, s(x32), s(x31))≥TEST(s(x32), s(s(x31)))) |
We simplified constraint (3) using rules (I), (II), (IV) which results in the following new constraint:
(6) (IF2(false, 0, s(x27))≥TEST(0, s(s(x27)))) |
We solved constraint (4) using rules (I), (II).We simplified constraint (5) using rule (IV) which results in the following new constraint:
(7) (div(x32, x31, x30)=false∧s(x31)=x30 ⇒ IF2(false, s(x32), s(x31))≥TEST(s(x32), s(s(x31)))) |
We simplified constraint (7) using rule (V) (with possible (I) afterwards) using induction on div(x32, x31, x30)=false which results in the following new constraints:
(8) (false=false∧s(s(x35))=x34 ⇒ IF2(false, s(0), s(s(x35)))≥TEST(s(0), s(s(s(x35))))) |
(9) (div(s(x37), s(x36), s(x36))=false∧s(0)=s(x36)∧(div(s(x37), s(x36), s(x36))=false∧s(s(x36))=s(x36) ⇒ IF2(false, s(s(x37)), s(s(x36)))≥TEST(s(s(x37)), s(s(s(x36))))) ⇒ IF2(false, s(s(x37)), s(0))≥TEST(s(s(x37)), s(s(0)))) |
(10) (div(x40, x39, x38)=false∧s(s(x39))=x38∧(div(x40, x39, x38)=false∧s(x39)=x38 ⇒ IF2(false, s(x40), s(x39))≥TEST(s(x40), s(s(x39)))) ⇒ IF2(false, s(s(x40)), s(s(x39)))≥TEST(s(s(x40)), s(s(s(x39))))) |
We simplified constraint (8) using rules (I), (II), (IV) which results in the following new constraint:
(11) (IF2(false, s(0), s(s(x35)))≥TEST(s(0), s(s(s(x35))))) |
We simplified constraint (9) using rules (I), (II), (III), (IV), (VII) which results in the following new constraint:
(12) (IF2(false, s(s(x37)), s(0))≥TEST(s(s(x37)), s(s(0)))) |
We simplified constraint (10) using rules (III), (IV) which results in the following new constraint:
(13) (IF2(false, s(s(x40)), s(s(x39)))≥TEST(s(s(x40)), s(s(s(x39))))) |
For Pair
IF1(
true,
x,
y) →
IF2(
div(
x,
y,
y),
x,
y) the following chains were created:
- We consider the chain TEST(x16, x17) → IF1(gt(x16, x17), x16, x17), IF1(true, x18, x19) → IF2(div(x18, x19, x19), x18, x19) which results in the following constraint:
(1) (IF1(gt(x16, x17), x16, x17)=IF1(true, x18, x19) ⇒ IF1(true, x18, x19)≥IF2(div(x18, x19, x19), x18, x19)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (gt(x16, x17)=true ⇒ IF1(true, x16, x17)≥IF2(div(x16, x17, x17), x16, x17)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gt(x16, x17)=true which results in the following new constraints:
(3) (true=true ⇒ IF1(true, s(x44), 0)≥IF2(div(s(x44), 0, 0), s(x44), 0)) |
(4) (gt(x47, x46)=true∧(gt(x47, x46)=true ⇒ IF1(true, x47, x46)≥IF2(div(x47, x46, x46), x47, x46)) ⇒ IF1(true, s(x47), s(x46))≥IF2(div(s(x47), s(x46), s(x46)), s(x47), s(x46))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IF1(true, s(x44), 0)≥IF2(div(s(x44), 0, 0), s(x44), 0)) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (gt(x47, x46)=true ⇒ IF1(true, x47, x46)≥IF2(div(x47, x46, x46), x47, x46)) with σ = [ ] which results in the following new constraint:
(6) (IF1(true, x47, x46)≥IF2(div(x47, x46, x46), x47, x46) ⇒ IF1(true, s(x47), s(x46))≥IF2(div(s(x47), s(x46), s(x46)), s(x47), s(x46))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- TEST(x, y) → IF1(gt(x, y), x, y)
- (TEST(x2, s(x3))≥IF1(gt(x2, s(x3)), x2, s(x3)))
- IF2(false, x, y) → TEST(x, s(y))
- (IF2(false, 0, s(x27))≥TEST(0, s(s(x27))))
- (IF2(false, s(0), s(s(x35)))≥TEST(s(0), s(s(s(x35)))))
- (IF2(false, s(s(x37)), s(0))≥TEST(s(s(x37)), s(s(0))))
- (IF2(false, s(s(x40)), s(s(x39)))≥TEST(s(s(x40)), s(s(s(x39)))))
- IF1(true, x, y) → IF2(div(x, y, y), x, y)
- (IF1(true, s(x44), 0)≥IF2(div(s(x44), 0, 0), s(x44), 0))
- (IF1(true, x47, x46)≥IF2(div(x47, x46, x46), x47, x46) ⇒ IF1(true, s(x47), s(x46))≥IF2(div(s(x47), s(x46), s(x46)), s(x47), s(x46)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 1
POL(IF1(x1, x2, x3)) = x2 - x3
POL(IF2(x1, x2, x3)) = x2 - x3
POL(TEST(x1, x2)) = x1 - x2
POL(c) = -1
POL(div(x1, x2, x3)) = 1 + x3
POL(false) = 1
POL(gt(x1, x2)) = 1
POL(s(x1)) = 1 + x1
POL(true) = 0
The following pairs are in P
>:
IF2(false, x, y) → TEST(x, s(y))
The following pairs are in P
bound:
IF1(true, x, y) → IF2(div(x, y, y), x, y)
There are no usable rules
(33) Complex Obligation (AND)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF1(true, x, y) → IF2(div(x, y, y), x, y)
The TRS R consists of the following rules:
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(36) TRUE
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TEST(x, y) → IF1(gt(x, y), x, y)
IF2(false, x, y) → TEST(x, s(y))
The TRS R consists of the following rules:
div(0, 0, z) → true
div(0, s(x), z) → false
div(s(x), 0, s(z)) → div(s(x), s(z), s(z))
div(s(x), s(y), z) → div(x, y, z)
gt(s(x), 0) → true
gt(0, y) → false
gt(s(x), s(y)) → gt(x, y)
The set Q consists of the following terms:
gt(s(x0), 0)
gt(0, x0)
gt(s(x0), s(x1))
div(0, 0, x0)
div(0, s(x0), x1)
div(s(x0), 0, s(x1))
div(s(x0), s(x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(38) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(39) TRUE