(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
MOD(x, s(y)) → MODITER(x, s(y), 0, 0)
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
MODITER(x, s(y), z, u) → LE(x, z)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF(false, x, y, z, u) → LE(y, s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(x), s(y)) → LE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
mod(x, 0) → modZeroErro
mod(x, s(y)) → modIter(x, s(y), 0, 0)
modIter(x, s(y), z, u) → if(le(x, z), x, s(y), z, u)
if(true, x, y, z, u) → u
if(false, x, y, z, u) → if2(le(y, s(u)), x, y, s(z), s(u))
if2(false, x, y, z, u) → modIter(x, y, z, u)
if2(true, x, y, z, u) → modIter(x, y, z, 0)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
mod(x0, 0)
mod(x0, s(x1))
modIter(x0, s(x1), x2, x3)
if(true, x0, x1, x2, x3)
if(false, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
if2(true, x0, x1, x2, x3)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(19) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
MODITER(
x,
s(
y),
z,
u) →
IF(
le(
x,
z),
x,
s(
y),
z,
u) the following chains were created:
- We consider the chain IF2(false, x8, x9, x10, x11) → MODITER(x8, x9, x10, x11), MODITER(x12, s(x13), x14, x15) → IF(le(x12, x14), x12, s(x13), x14, x15) which results in the following constraint:
(1) (MODITER(x8, x9, x10, x11)=MODITER(x12, s(x13), x14, x15) ⇒ MODITER(x12, s(x13), x14, x15)≥IF(le(x12, x14), x12, s(x13), x14, x15)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (MODITER(x8, s(x13), x10, x11)≥IF(le(x8, x10), x8, s(x13), x10, x11)) |
- We consider the chain IF2(true, x16, x17, x18, x19) → MODITER(x16, x17, x18, 0), MODITER(x20, s(x21), x22, x23) → IF(le(x20, x22), x20, s(x21), x22, x23) which results in the following constraint:
(1) (MODITER(x16, x17, x18, 0)=MODITER(x20, s(x21), x22, x23) ⇒ MODITER(x20, s(x21), x22, x23)≥IF(le(x20, x22), x20, s(x21), x22, x23)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (MODITER(x16, s(x21), x18, 0)≥IF(le(x16, x18), x16, s(x21), x18, 0)) |
For Pair
IF(
false,
x,
y,
z,
u) →
IF2(
le(
y,
s(
u)),
x,
y,
s(
z),
s(
u)) the following chains were created:
- We consider the chain MODITER(x24, s(x25), x26, x27) → IF(le(x24, x26), x24, s(x25), x26, x27), IF(false, x28, x29, x30, x31) → IF2(le(x29, s(x31)), x28, x29, s(x30), s(x31)) which results in the following constraint:
(1) (IF(le(x24, x26), x24, s(x25), x26, x27)=IF(false, x28, x29, x30, x31) ⇒ IF(false, x28, x29, x30, x31)≥IF2(le(x29, s(x31)), x28, x29, s(x30), s(x31))) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (le(x24, x26)=false ⇒ IF(false, x24, s(x25), x26, x27)≥IF2(le(s(x25), s(x27)), x24, s(x25), s(x26), s(x27))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x24, x26)=false which results in the following new constraints:
(3) (le(x86, x85)=false∧(∀x87,x88:le(x86, x85)=false ⇒ IF(false, x86, s(x87), x85, x88)≥IF2(le(s(x87), s(x88)), x86, s(x87), s(x85), s(x88))) ⇒ IF(false, s(x86), s(x25), s(x85), x27)≥IF2(le(s(x25), s(x27)), s(x86), s(x25), s(s(x85)), s(x27))) |
(4) (false=false ⇒ IF(false, s(x89), s(x25), 0, x27)≥IF2(le(s(x25), s(x27)), s(x89), s(x25), s(0), s(x27))) |
We simplified constraint (3) using rule (VI) where we applied the induction hypothesis (∀x87,x88:le(x86, x85)=false ⇒ IF(false, x86, s(x87), x85, x88)≥IF2(le(s(x87), s(x88)), x86, s(x87), s(x85), s(x88))) with σ = [x87 / x25, x88 / x27] which results in the following new constraint:
(5) (IF(false, x86, s(x25), x85, x27)≥IF2(le(s(x25), s(x27)), x86, s(x25), s(x85), s(x27)) ⇒ IF(false, s(x86), s(x25), s(x85), x27)≥IF2(le(s(x25), s(x27)), s(x86), s(x25), s(s(x85)), s(x27))) |
We simplified constraint (4) using rules (I), (II) which results in the following new constraint:
(6) (IF(false, s(x89), s(x25), 0, x27)≥IF2(le(s(x25), s(x27)), s(x89), s(x25), s(0), s(x27))) |
For Pair
IF2(
false,
x,
y,
z,
u) →
MODITER(
x,
y,
z,
u) the following chains were created:
- We consider the chain IF(false, x48, x49, x50, x51) → IF2(le(x49, s(x51)), x48, x49, s(x50), s(x51)), IF2(false, x52, x53, x54, x55) → MODITER(x52, x53, x54, x55) which results in the following constraint:
(1) (IF2(le(x49, s(x51)), x48, x49, s(x50), s(x51))=IF2(false, x52, x53, x54, x55) ⇒ IF2(false, x52, x53, x54, x55)≥MODITER(x52, x53, x54, x55)) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (s(x51)=x90∧le(x49, x90)=false ⇒ IF2(false, x48, x49, s(x50), s(x51))≥MODITER(x48, x49, s(x50), s(x51))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x49, x90)=false which results in the following new constraints:
(3) (le(x93, x92)=false∧s(x51)=s(x92)∧(∀x94,x95,x96:le(x93, x92)=false∧s(x94)=x92 ⇒ IF2(false, x95, x93, s(x96), s(x94))≥MODITER(x95, x93, s(x96), s(x94))) ⇒ IF2(false, x48, s(x93), s(x50), s(x51))≥MODITER(x48, s(x93), s(x50), s(x51))) |
(4) (false=false∧s(x51)=0 ⇒ IF2(false, x48, s(x97), s(x50), s(x51))≥MODITER(x48, s(x97), s(x50), s(x51))) |
We simplified constraint (3) using rules (I), (II), (III), (IV) which results in the following new constraint:
(5) (le(x93, x92)=false ⇒ IF2(false, x48, s(x93), s(x50), s(x92))≥MODITER(x48, s(x93), s(x50), s(x92))) |
We solved constraint (4) using rules (I), (II).We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on le(x93, x92)=false which results in the following new constraints:
(6) (le(x100, x99)=false∧(∀x101,x102:le(x100, x99)=false ⇒ IF2(false, x101, s(x100), s(x102), s(x99))≥MODITER(x101, s(x100), s(x102), s(x99))) ⇒ IF2(false, x48, s(s(x100)), s(x50), s(s(x99)))≥MODITER(x48, s(s(x100)), s(x50), s(s(x99)))) |
(7) (false=false ⇒ IF2(false, x48, s(s(x103)), s(x50), s(0))≥MODITER(x48, s(s(x103)), s(x50), s(0))) |
We simplified constraint (6) using rule (VI) where we applied the induction hypothesis (∀x101,x102:le(x100, x99)=false ⇒ IF2(false, x101, s(x100), s(x102), s(x99))≥MODITER(x101, s(x100), s(x102), s(x99))) with σ = [x101 / x48, x102 / x50] which results in the following new constraint:
(8) (IF2(false, x48, s(x100), s(x50), s(x99))≥MODITER(x48, s(x100), s(x50), s(x99)) ⇒ IF2(false, x48, s(s(x100)), s(x50), s(s(x99)))≥MODITER(x48, s(s(x100)), s(x50), s(s(x99)))) |
We simplified constraint (7) using rules (I), (II) which results in the following new constraint:
(9) (IF2(false, x48, s(s(x103)), s(x50), s(0))≥MODITER(x48, s(s(x103)), s(x50), s(0))) |
For Pair
IF2(
true,
x,
y,
z,
u) →
MODITER(
x,
y,
z,
0) the following chains were created:
- We consider the chain IF(false, x68, x69, x70, x71) → IF2(le(x69, s(x71)), x68, x69, s(x70), s(x71)), IF2(true, x72, x73, x74, x75) → MODITER(x72, x73, x74, 0) which results in the following constraint:
(1) (IF2(le(x69, s(x71)), x68, x69, s(x70), s(x71))=IF2(true, x72, x73, x74, x75) ⇒ IF2(true, x72, x73, x74, x75)≥MODITER(x72, x73, x74, 0)) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (s(x71)=x104∧le(x69, x104)=true ⇒ IF2(true, x68, x69, s(x70), s(x71))≥MODITER(x68, x69, s(x70), 0)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x69, x104)=true which results in the following new constraints:
(3) (true=true∧s(x71)=x105 ⇒ IF2(true, x68, 0, s(x70), s(x71))≥MODITER(x68, 0, s(x70), 0)) |
(4) (le(x107, x106)=true∧s(x71)=s(x106)∧(∀x108,x109,x110:le(x107, x106)=true∧s(x108)=x106 ⇒ IF2(true, x109, x107, s(x110), s(x108))≥MODITER(x109, x107, s(x110), 0)) ⇒ IF2(true, x68, s(x107), s(x70), s(x71))≥MODITER(x68, s(x107), s(x70), 0)) |
We simplified constraint (3) using rules (I), (II), (IV) which results in the following new constraint:
(5) (IF2(true, x68, 0, s(x70), s(x71))≥MODITER(x68, 0, s(x70), 0)) |
We simplified constraint (4) using rules (I), (II), (III), (IV) which results in the following new constraint:
(6) (le(x107, x106)=true ⇒ IF2(true, x68, s(x107), s(x70), s(x106))≥MODITER(x68, s(x107), s(x70), 0)) |
We simplified constraint (6) using rule (V) (with possible (I) afterwards) using induction on le(x107, x106)=true which results in the following new constraints:
(7) (true=true ⇒ IF2(true, x68, s(0), s(x70), s(x112))≥MODITER(x68, s(0), s(x70), 0)) |
(8) (le(x114, x113)=true∧(∀x115,x116:le(x114, x113)=true ⇒ IF2(true, x115, s(x114), s(x116), s(x113))≥MODITER(x115, s(x114), s(x116), 0)) ⇒ IF2(true, x68, s(s(x114)), s(x70), s(s(x113)))≥MODITER(x68, s(s(x114)), s(x70), 0)) |
We simplified constraint (7) using rules (I), (II) which results in the following new constraint:
(9) (IF2(true, x68, s(0), s(x70), s(x112))≥MODITER(x68, s(0), s(x70), 0)) |
We simplified constraint (8) using rule (VI) where we applied the induction hypothesis (∀x115,x116:le(x114, x113)=true ⇒ IF2(true, x115, s(x114), s(x116), s(x113))≥MODITER(x115, s(x114), s(x116), 0)) with σ = [x115 / x68, x116 / x70] which results in the following new constraint:
(10) (IF2(true, x68, s(x114), s(x70), s(x113))≥MODITER(x68, s(x114), s(x70), 0) ⇒ IF2(true, x68, s(s(x114)), s(x70), s(s(x113)))≥MODITER(x68, s(s(x114)), s(x70), 0)) |
To summarize, we get the following constraints P
≥ for the following pairs.
- MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
- (MODITER(x8, s(x13), x10, x11)≥IF(le(x8, x10), x8, s(x13), x10, x11))
- (MODITER(x16, s(x21), x18, 0)≥IF(le(x16, x18), x16, s(x21), x18, 0))
- IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
- (IF(false, x86, s(x25), x85, x27)≥IF2(le(s(x25), s(x27)), x86, s(x25), s(x85), s(x27)) ⇒ IF(false, s(x86), s(x25), s(x85), x27)≥IF2(le(s(x25), s(x27)), s(x86), s(x25), s(s(x85)), s(x27)))
- (IF(false, s(x89), s(x25), 0, x27)≥IF2(le(s(x25), s(x27)), s(x89), s(x25), s(0), s(x27)))
- IF2(false, x, y, z, u) → MODITER(x, y, z, u)
- (IF2(false, x48, s(x100), s(x50), s(x99))≥MODITER(x48, s(x100), s(x50), s(x99)) ⇒ IF2(false, x48, s(s(x100)), s(x50), s(s(x99)))≥MODITER(x48, s(s(x100)), s(x50), s(s(x99))))
- (IF2(false, x48, s(s(x103)), s(x50), s(0))≥MODITER(x48, s(s(x103)), s(x50), s(0)))
- IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
- (IF2(true, x68, 0, s(x70), s(x71))≥MODITER(x68, 0, s(x70), 0))
- (IF2(true, x68, s(0), s(x70), s(x112))≥MODITER(x68, s(0), s(x70), 0))
- (IF2(true, x68, s(x114), s(x70), s(x113))≥MODITER(x68, s(x114), s(x70), 0) ⇒ IF2(true, x68, s(s(x114)), s(x70), s(s(x113)))≥MODITER(x68, s(s(x114)), s(x70), 0))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(IF(x1, x2, x3, x4, x5)) = x2 - x4 + x5
POL(IF2(x1, x2, x3, x4, x5)) = 1 - x1 + x2 - x4 + x5
POL(MODITER(x1, x2, x3, x4)) = x1 - x3 + x4
POL(c) = -1
POL(false) = 1
POL(le(x1, x2)) = 1
POL(s(x1)) = 1 + x1
POL(true) = 1
The following pairs are in P
>:
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
The following pairs are in P
bound:
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
The following rules are usable:
true → le(0, y)
le(x, y) → le(s(x), s(y))
false → le(s(x), 0)
(20) Complex Obligation (AND)
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(22) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
MODITER(
x,
s(
y),
z,
u) →
IF(
le(
x,
z),
x,
s(
y),
z,
u) the following chains were created:
- We consider the chain IF2(false, x8, x9, x10, x11) → MODITER(x8, x9, x10, x11), MODITER(x12, s(x13), x14, x15) → IF(le(x12, x14), x12, s(x13), x14, x15) which results in the following constraint:
(1) (MODITER(x8, x9, x10, x11)=MODITER(x12, s(x13), x14, x15) ⇒ MODITER(x12, s(x13), x14, x15)≥IF(le(x12, x14), x12, s(x13), x14, x15)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (MODITER(x8, s(x13), x10, x11)≥IF(le(x8, x10), x8, s(x13), x10, x11)) |
For Pair
IF(
false,
x,
y,
z,
u) →
IF2(
le(
y,
s(
u)),
x,
y,
s(
z),
s(
u)) the following chains were created:
- We consider the chain MODITER(x24, s(x25), x26, x27) → IF(le(x24, x26), x24, s(x25), x26, x27), IF(false, x28, x29, x30, x31) → IF2(le(x29, s(x31)), x28, x29, s(x30), s(x31)) which results in the following constraint:
(1) (IF(le(x24, x26), x24, s(x25), x26, x27)=IF(false, x28, x29, x30, x31) ⇒ IF(false, x28, x29, x30, x31)≥IF2(le(x29, s(x31)), x28, x29, s(x30), s(x31))) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (le(x24, x26)=false ⇒ IF(false, x24, s(x25), x26, x27)≥IF2(le(s(x25), s(x27)), x24, s(x25), s(x26), s(x27))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x24, x26)=false which results in the following new constraints:
(3) (le(x86, x85)=false∧(∀x87,x88:le(x86, x85)=false ⇒ IF(false, x86, s(x87), x85, x88)≥IF2(le(s(x87), s(x88)), x86, s(x87), s(x85), s(x88))) ⇒ IF(false, s(x86), s(x25), s(x85), x27)≥IF2(le(s(x25), s(x27)), s(x86), s(x25), s(s(x85)), s(x27))) |
(4) (false=false ⇒ IF(false, s(x89), s(x25), 0, x27)≥IF2(le(s(x25), s(x27)), s(x89), s(x25), s(0), s(x27))) |
We simplified constraint (3) using rule (VI) where we applied the induction hypothesis (∀x87,x88:le(x86, x85)=false ⇒ IF(false, x86, s(x87), x85, x88)≥IF2(le(s(x87), s(x88)), x86, s(x87), s(x85), s(x88))) with σ = [x87 / x25, x88 / x27] which results in the following new constraint:
(5) (IF(false, x86, s(x25), x85, x27)≥IF2(le(s(x25), s(x27)), x86, s(x25), s(x85), s(x27)) ⇒ IF(false, s(x86), s(x25), s(x85), x27)≥IF2(le(s(x25), s(x27)), s(x86), s(x25), s(s(x85)), s(x27))) |
We simplified constraint (4) using rules (I), (II) which results in the following new constraint:
(6) (IF(false, s(x89), s(x25), 0, x27)≥IF2(le(s(x25), s(x27)), s(x89), s(x25), s(0), s(x27))) |
For Pair
IF2(
false,
x,
y,
z,
u) →
MODITER(
x,
y,
z,
u) the following chains were created:
- We consider the chain IF(false, x48, x49, x50, x51) → IF2(le(x49, s(x51)), x48, x49, s(x50), s(x51)), IF2(false, x52, x53, x54, x55) → MODITER(x52, x53, x54, x55) which results in the following constraint:
(1) (IF2(le(x49, s(x51)), x48, x49, s(x50), s(x51))=IF2(false, x52, x53, x54, x55) ⇒ IF2(false, x52, x53, x54, x55)≥MODITER(x52, x53, x54, x55)) |
We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint:
(2) (s(x51)=x90∧le(x49, x90)=false ⇒ IF2(false, x48, x49, s(x50), s(x51))≥MODITER(x48, x49, s(x50), s(x51))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x49, x90)=false which results in the following new constraints:
(3) (le(x93, x92)=false∧s(x51)=s(x92)∧(∀x94,x95,x96:le(x93, x92)=false∧s(x94)=x92 ⇒ IF2(false, x95, x93, s(x96), s(x94))≥MODITER(x95, x93, s(x96), s(x94))) ⇒ IF2(false, x48, s(x93), s(x50), s(x51))≥MODITER(x48, s(x93), s(x50), s(x51))) |
(4) (false=false∧s(x51)=0 ⇒ IF2(false, x48, s(x97), s(x50), s(x51))≥MODITER(x48, s(x97), s(x50), s(x51))) |
We simplified constraint (3) using rules (I), (II), (III), (IV) which results in the following new constraint:
(5) (le(x93, x92)=false ⇒ IF2(false, x48, s(x93), s(x50), s(x92))≥MODITER(x48, s(x93), s(x50), s(x92))) |
We solved constraint (4) using rules (I), (II).We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on le(x93, x92)=false which results in the following new constraints:
(6) (le(x100, x99)=false∧(∀x101,x102:le(x100, x99)=false ⇒ IF2(false, x101, s(x100), s(x102), s(x99))≥MODITER(x101, s(x100), s(x102), s(x99))) ⇒ IF2(false, x48, s(s(x100)), s(x50), s(s(x99)))≥MODITER(x48, s(s(x100)), s(x50), s(s(x99)))) |
(7) (false=false ⇒ IF2(false, x48, s(s(x103)), s(x50), s(0))≥MODITER(x48, s(s(x103)), s(x50), s(0))) |
We simplified constraint (6) using rule (VI) where we applied the induction hypothesis (∀x101,x102:le(x100, x99)=false ⇒ IF2(false, x101, s(x100), s(x102), s(x99))≥MODITER(x101, s(x100), s(x102), s(x99))) with σ = [x101 / x48, x102 / x50] which results in the following new constraint:
(8) (IF2(false, x48, s(x100), s(x50), s(x99))≥MODITER(x48, s(x100), s(x50), s(x99)) ⇒ IF2(false, x48, s(s(x100)), s(x50), s(s(x99)))≥MODITER(x48, s(s(x100)), s(x50), s(s(x99)))) |
We simplified constraint (7) using rules (I), (II) which results in the following new constraint:
(9) (IF2(false, x48, s(s(x103)), s(x50), s(0))≥MODITER(x48, s(s(x103)), s(x50), s(0))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
- (MODITER(x8, s(x13), x10, x11)≥IF(le(x8, x10), x8, s(x13), x10, x11))
- IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
- (IF(false, x86, s(x25), x85, x27)≥IF2(le(s(x25), s(x27)), x86, s(x25), s(x85), s(x27)) ⇒ IF(false, s(x86), s(x25), s(x85), x27)≥IF2(le(s(x25), s(x27)), s(x86), s(x25), s(s(x85)), s(x27)))
- (IF(false, s(x89), s(x25), 0, x27)≥IF2(le(s(x25), s(x27)), s(x89), s(x25), s(0), s(x27)))
- IF2(false, x, y, z, u) → MODITER(x, y, z, u)
- (IF2(false, x48, s(x100), s(x50), s(x99))≥MODITER(x48, s(x100), s(x50), s(x99)) ⇒ IF2(false, x48, s(s(x100)), s(x50), s(s(x99)))≥MODITER(x48, s(s(x100)), s(x50), s(s(x99))))
- (IF2(false, x48, s(s(x103)), s(x50), s(0))≥MODITER(x48, s(s(x103)), s(x50), s(0)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(IF(x1, x2, x3, x4, x5)) = -1 - x1 + x2 + x3 - x5
POL(IF2(x1, x2, x3, x4, x5)) = -1 + x2 + x3 - x5
POL(MODITER(x1, x2, x3, x4)) = -1 + x1 + x2 - x4
POL(c) = -1
POL(false) = 1
POL(le(x1, x2)) = 1
POL(s(x1)) = 1 + x1
POL(true) = 1
The following pairs are in P
>:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
The following pairs are in P
bound:
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
The following rules are usable:
true → le(0, y)
le(x, y) → le(s(x), s(y))
false → le(s(x), 0)
(23) Complex Obligation (AND)
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(26) TRUE
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF(false, x, y, z, u) → IF2(le(y, s(u)), x, y, s(z), s(u))
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(29) TRUE
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MODITER(x, s(y), z, u) → IF(le(x, z), x, s(y), z, u)
IF2(false, x, y, z, u) → MODITER(x, y, z, u)
IF2(true, x, y, z, u) → MODITER(x, y, z, 0)
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(31) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.
(32) TRUE