(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
LE(s(n), s(m)) → LE(n, m)
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
MIN(cons(n, cons(m, x))) → LE(n, m)
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
REPLACE(n, m, cons(k, x)) → EQ(n, k)
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
SORT(x) → SORTITER(x, nil)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
SORTITER(x, y) → EMPTY(x)
SORTITER(x, y) → MIN(x)
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
IF(false, x, y, z) → REPLACE(min(x), head(x), tail(x))
IF(false, x, y, z) → MIN(x)
IF(false, x, y, z) → HEAD(x)
IF(false, x, y, z) → TAIL(x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(n), s(m)) → LE(n, m)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(n), s(m)) → LE(n, m)
R is empty.
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(n), s(m)) → LE(n, m)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(n), s(m)) → LE(n, m)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
The TRS R consists of the following rules:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
The TRS R consists of the following rules:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MIN(cons(n, cons(m, x))) → IF_MIN(le(n, m), cons(n, cons(m, x)))
IF_MIN(true, cons(n, cons(m, x))) → MIN(cons(n, x))
IF_MIN(false, cons(n, cons(m, x))) → MIN(cons(m, x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( IF_MIN(x1, x2) ) = max{0, 2x1 + x2 - 2} |
POL( MIN(x1) ) = max{0, 2x1 - 1} |
POL( cons(x1, x2) ) = 2x2 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
(20) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
The set Q consists of the following terms:
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(21) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(22) YES
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(24) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
R is empty.
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(26) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(n), s(m)) → EQ(n, m)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EQ(s(n), s(m)) → EQ(n, m)
The graph contains the following edges 1 > 1, 2 > 2
(29) YES
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(33) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(35) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- IF_REPLACE(false, n, m, cons(k, x)) → REPLACE(n, m, x)
The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3
- REPLACE(n, m, cons(k, x)) → IF_REPLACE(eq(n, k), n, m, cons(k, x))
The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4
(36) YES
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
empty(nil) → true
empty(cons(n, x)) → false
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
sort(x) → sortIter(x, nil)
sortIter(x, y) → if(empty(x), x, y, append(y, cons(min(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → sortIter(replace(min(x), head(x), tail(x)), z)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(38) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(40) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
sort(x0)
sortIter(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(42) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(false, x, y, z) → SORTITER(replace(min(x), head(x), tail(x)), z)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO,RATPOLO]:
POL(0) = [1]
POL(IF(x1, x2, x3, x4)) = [1/2]x1 + [1/4]x2 + [1/4]x4
POL(SORTITER(x1, x2)) = [1/2]x1
POL(append(x1, x2)) = 0
POL(cons(x1, x2)) = [1] + [2]x2
POL(empty(x1)) = [1/2]x1
POL(eq(x1, x2)) = [1/4] + [1/4]x1 + [4]x2
POL(false) = [1/2]
POL(head(x1)) = 0
POL(if_min(x1, x2)) = 0
POL(if_replace(x1, x2, x3, x4)) = x4
POL(le(x1, x2)) = 0
POL(min(x1)) = [4]x1
POL(nil) = [1/2]
POL(replace(x1, x2, x3)) = x3
POL(s(x1)) = [1] + x1
POL(tail(x1)) = [1/4] + [1/2]x1
POL(true) = [1/4]
The value of delta used in the strict ordering is 1/8.
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
empty(nil) → true
empty(cons(n, x)) → false
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SORTITER(x, y) → IF(empty(x), x, y, append(y, cons(min(x), nil)))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(n, x)) → false
min(cons(x, nil)) → x
min(cons(n, cons(m, x))) → if_min(le(n, m), cons(n, cons(m, x)))
if_min(true, cons(n, cons(m, x))) → min(cons(n, x))
if_min(false, cons(n, cons(m, x))) → min(cons(m, x))
le(0, m) → true
le(s(n), 0) → false
le(s(n), s(m)) → le(n, m)
head(cons(n, x)) → n
tail(nil) → nil
tail(cons(n, x)) → x
replace(n, m, nil) → nil
replace(n, m, cons(k, x)) → if_replace(eq(n, k), n, m, cons(k, x))
eq(0, 0) → true
eq(0, s(m)) → false
eq(s(n), 0) → false
eq(s(n), s(m)) → eq(n, m)
if_replace(true, n, m, cons(k, x)) → cons(m, x)
if_replace(false, n, m, cons(k, x)) → cons(k, replace(n, m, x))
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(x0, nil))
min(cons(x0, cons(x1, x2)))
if_min(true, cons(x0, cons(x1, x2)))
if_min(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
if_replace(true, x0, x1, cons(x2, x3))
if_replace(false, x0, x1, cons(x2, x3))
empty(nil)
empty(cons(x0, x1))
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(44) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(45) TRUE