(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
head(cons(x, y)) → x
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
if_intlist(false, x) → cons(s(head(x)), intlist(tail(x)))
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
head(cons(x, y)) → x
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
if_intlist(false, x) → cons(s(head(x)), intlist(tail(x)))
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
INTLIST(x) → IF_INTLIST(empty(x), x)
INTLIST(x) → EMPTY(x)
IF_INTLIST(false, x) → HEAD(x)
IF_INTLIST(false, x) → INTLIST(tail(x))
IF_INTLIST(false, x) → TAIL(x)
INT(x, y) → IF_INT(zero(x), zero(y), x, y)
INT(x, y) → ZERO(x)
INT(x, y) → ZERO(y)
IF_INT(true, b, x, y) → IF1(b, x, y)
IF_INT(false, b, x, y) → IF2(b, x, y)
IF1(false, x, y) → INT(s(0), y)
IF2(false, x, y) → INTLIST(int(p(x), p(y)))
IF2(false, x, y) → INT(p(x), p(y))
IF2(false, x, y) → P(x)
IF2(false, x, y) → P(y)
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
head(cons(x, y)) → x
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
if_intlist(false, x) → cons(s(head(x)), intlist(tail(x)))
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 8 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INTLIST(false, x) → INTLIST(tail(x))
INTLIST(x) → IF_INTLIST(empty(x), x)
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
head(cons(x, y)) → x
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
if_intlist(false, x) → cons(s(head(x)), intlist(tail(x)))
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INTLIST(false, x) → INTLIST(tail(x))
INTLIST(x) → IF_INTLIST(empty(x), x)
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INTLIST(false, x) → INTLIST(tail(x))
INTLIST(x) → IF_INTLIST(empty(x), x)
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(12) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
INTLIST(x) → IF_INTLIST(empty(x), x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO,RATPOLO]:
POL(IF_INTLIST(x1, x2)) = [2] + [2]x1 + x2
POL(INTLIST(x1)) = [4] + [4]x1
POL(cons(x1, x2)) = [1] + [4]x2
POL(empty(x1)) = [1/4] + x1
POL(false) = [1]
POL(nil) = 0
POL(tail(x1)) = [1/4]x1
POL(true) = 0
The value of delta used in the strict ordering is 3/2.
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
tail(nil) → nil
tail(cons(x, y)) → y
empty(nil) → true
empty(cons(x, y)) → false
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INTLIST(false, x) → INTLIST(tail(x))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(14) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(15) TRUE
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
head(cons(x, y)) → x
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
if_intlist(false, x) → cons(s(head(x)), intlist(tail(x)))
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
R is empty.
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(19) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P(s(s(x))) → P(s(x))
The graph contains the following edges 1 > 1
(22) YES
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
INT(x, y) → IF_INT(zero(x), zero(y), x, y)
IF_INT(true, b, x, y) → IF1(b, x, y)
IF1(false, x, y) → INT(s(0), y)
IF_INT(false, b, x, y) → IF2(b, x, y)
The TRS R consists of the following rules:
empty(nil) → true
empty(cons(x, y)) → false
tail(nil) → nil
tail(cons(x, y)) → y
head(cons(x, y)) → x
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
intlist(x) → if_intlist(empty(x), x)
if_intlist(true, x) → nil
if_intlist(false, x) → cons(s(head(x)), intlist(tail(x)))
int(x, y) → if_int(zero(x), zero(y), x, y)
if_int(true, b, x, y) → if1(b, x, y)
if_int(false, b, x, y) → if2(b, x, y)
if1(true, x, y) → cons(0, nil)
if1(false, x, y) → cons(0, int(s(0), y))
if2(true, x, y) → nil
if2(false, x, y) → intlist(int(p(x), p(y)))
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(24) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
INT(x, y) → IF_INT(zero(x), zero(y), x, y)
IF_INT(true, b, x, y) → IF1(b, x, y)
IF1(false, x, y) → INT(s(0), y)
IF_INT(false, b, x, y) → IF2(b, x, y)
The TRS R consists of the following rules:
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(26) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
empty(nil)
empty(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
head(cons(x0, x1))
intlist(x0)
if_intlist(true, x0)
if_intlist(false, x0)
int(x0, x1)
if_int(true, x0, x1, x2)
if_int(false, x0, x1, x2)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
INT(x, y) → IF_INT(zero(x), zero(y), x, y)
IF_INT(true, b, x, y) → IF1(b, x, y)
IF1(false, x, y) → INT(s(0), y)
IF_INT(false, b, x, y) → IF2(b, x, y)
The TRS R consists of the following rules:
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(28) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
INT(
x,
y) →
IF_INT(
zero(
x),
zero(
y),
x,
y) at position [0] we obtained the following new rules [LPAR04]:
INT(0, y1) → IF_INT(true, zero(y1), 0, y1) → INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1) → INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
IF_INT(true, b, x, y) → IF1(b, x, y)
IF1(false, x, y) → INT(s(0), y)
IF_INT(false, b, x, y) → IF2(b, x, y)
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
The TRS R consists of the following rules:
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(30) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF_INT(
true,
b,
x,
y) →
IF1(
b,
x,
y) we obtained the following new rules [LPAR04]:
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0) → IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
IF1(false, x, y) → INT(s(0), y)
IF_INT(false, b, x, y) → IF2(b, x, y)
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
The TRS R consists of the following rules:
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(32) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF1(
false,
x,
y) →
INT(
s(
0),
y) we obtained the following new rules [LPAR04]:
IF1(false, 0, z1) → INT(s(0), z1) → IF1(false, 0, z1) → INT(s(0), z1)
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
IF_INT(false, b, x, y) → IF2(b, x, y)
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
IF1(false, 0, z1) → INT(s(0), z1)
The TRS R consists of the following rules:
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(34) QDPQMonotonicMRRProof (EQUIVALENT transformation)
By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.
Strictly oriented rules of the TRS R:
zero(0) → true
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 1
POL(IF1(x1, x2, x3)) = x1 + 2·x2
POL(IF2(x1, x2, x3)) = x1 + 2·x2
POL(IF_INT(x1, x2, x3, x4)) = x2 + 2·x3
POL(INT(x1, x2)) = 2 + 2·x1
POL(false) = 2
POL(p(x1)) = x1
POL(s(x1)) = x1
POL(true) = 1
POL(zero(x1)) = 2
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y) → INT(p(x), p(y))
IF_INT(false, b, x, y) → IF2(b, x, y)
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
IF1(false, 0, z1) → INT(s(0), z1)
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(36) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF2(
false,
x,
y) →
INT(
p(
x),
p(
y)) at position [0] we obtained the following new rules [LPAR04]:
IF2(false, 0, y1) → INT(0, p(y1)) → IF2(false, 0, y1) → INT(0, p(y1))
IF2(false, s(0), y1) → INT(0, p(y1)) → IF2(false, s(0), y1) → INT(0, p(y1))
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1)) → IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INT(false, b, x, y) → IF2(b, x, y)
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
IF1(false, 0, z1) → INT(s(0), z1)
IF2(false, 0, y1) → INT(0, p(y1))
IF2(false, s(0), y1) → INT(0, p(y1))
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(38) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF_INT(
false,
b,
x,
y) →
IF2(
b,
x,
y) we obtained the following new rules [LPAR04]:
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1) → IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
IF1(false, 0, z1) → INT(s(0), z1)
IF2(false, 0, y1) → INT(0, p(y1))
IF2(false, s(0), y1) → INT(0, p(y1))
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(40) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INT(true, y_0, 0, z0) → IF1(y_0, 0, z0)
IF1(false, 0, z1) → INT(s(0), z1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(0), y1) → INT(0, p(y1))
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(42) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IF_INT(
true,
y_0,
0,
z0) →
IF1(
y_0,
0,
z0) we obtained the following new rules [LPAR04]:
IF_INT(true, false, 0, x1) → IF1(false, 0, x1) → IF_INT(true, false, 0, x1) → IF1(false, 0, x1)
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, 0, z1) → INT(s(0), z1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(0), y1) → INT(0, p(y1))
INT(0, y1) → IF_INT(true, zero(y1), 0, y1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF_INT(true, false, 0, x1) → IF1(false, 0, x1)
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(44) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
INT(
0,
y1) →
IF_INT(
true,
zero(
y1),
0,
y1) at position [1] we obtained the following new rules [LPAR04]:
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0)) → INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, 0, z1) → INT(s(0), z1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(0), y1) → INT(0, p(y1))
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF_INT(true, false, 0, x1) → IF1(false, 0, x1)
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(46) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF2(
false,
s(
0),
y1) →
INT(
0,
p(
y1)) at position [1] we obtained the following new rules [LPAR04]:
IF2(false, s(0), 0) → INT(0, 0) → IF2(false, s(0), 0) → INT(0, 0)
IF2(false, s(0), s(0)) → INT(0, 0) → IF2(false, s(0), s(0)) → INT(0, 0)
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0)))) → IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, 0, z1) → INT(s(0), z1)
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF_INT(true, false, 0, x1) → IF1(false, 0, x1)
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF2(false, s(0), 0) → INT(0, 0)
IF2(false, s(0), s(0)) → INT(0, 0)
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(48) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, x1) → IF1(false, 0, x1)
IF1(false, 0, z1) → INT(s(0), z1)
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(50) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF_INT(
true,
false,
0,
x1) →
IF1(
false,
0,
x1) we obtained the following new rules [LPAR04]:
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0)) → IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF1(false, 0, z1) → INT(s(0), z1)
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(52) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF1(
false,
0,
z1) →
INT(
s(
0),
z1) we obtained the following new rules [LPAR04]:
IF1(false, 0, s(z0)) → INT(s(0), s(z0)) → IF1(false, 0, s(z0)) → INT(s(0), s(z0))
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF_INT(false, y_0, s(z0), z1) → IF2(y_0, s(z0), z1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(54) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IF_INT(
false,
y_0,
s(
z0),
z1) →
IF2(
y_0,
s(
z0),
z1) we obtained the following new rules [LPAR04]:
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2) → IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(x0), y1) → IF_INT(false, zero(y1), s(x0), y1)
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(56) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
INT(
s(
x0),
y1) →
IF_INT(
false,
zero(
y1),
s(
x0),
y1) at position [1] we obtained the following new rules [LPAR04]:
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0)) → INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
The TRS R consists of the following rules:
zero(s(x)) → false
p(0) → 0
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(58) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
p(0) → 0
The set Q consists of the following terms:
zero(0)
zero(s(x0))
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(60) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
zero(0)
zero(s(x0))
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, s(s(x0)), y1) → INT(s(p(s(x0))), p(y1))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
p(0) → 0
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(62) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF2(
false,
s(
s(
x0)),
y1) →
INT(
s(
p(
s(
x0))),
p(
y1)) at position [1] we obtained the following new rules [LPAR04]:
IF2(false, s(s(y0)), s(0)) → INT(s(p(s(y0))), 0) → IF2(false, s(s(y0)), s(0)) → INT(s(p(s(y0))), 0)
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0)))) → IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
IF2(false, s(s(y0)), 0) → INT(s(p(s(y0))), 0) → IF2(false, s(s(y0)), 0) → INT(s(p(s(y0))), 0)
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
IF2(false, s(s(y0)), s(0)) → INT(s(p(s(y0))), 0)
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
IF2(false, s(s(y0)), 0) → INT(s(p(s(y0))), 0)
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
p(0) → 0
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(64) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
p(0) → 0
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(66) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
IF_INT(false, false, s(s(y_0)), x2) → IF2(false, s(s(y_0)), x2)
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(68) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF_INT(
false,
false,
s(
s(
y_0)),
x2) →
IF2(
false,
s(
s(
y_0)),
x2) we obtained the following new rules [LPAR04]:
IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1)) → IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1))
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
INT(s(y0), s(x0)) → IF_INT(false, false, s(y0), s(x0))
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(70) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
INT(
s(
y0),
s(
x0)) →
IF_INT(
false,
false,
s(
y0),
s(
x0)) we obtained the following new rules [LPAR04]:
INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0))) → INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0)))
INT(s(s(y_0)), s(x1)) → IF_INT(false, false, s(s(y_0)), s(x1)) → INT(s(s(y_0)), s(x1)) → IF_INT(false, false, s(s(y_0)), s(x1))
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1))
INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0)))
INT(s(s(y_0)), s(x1)) → IF_INT(false, false, s(s(y_0)), s(x1))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(72) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(73) Complex Obligation (AND)
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
IF1(false, 0, s(z0)) → INT(s(0), s(z0))
INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0)))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(75) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IF1(
false,
0,
s(
z0)) →
INT(
s(
0),
s(
z0)) we obtained the following new rules [LPAR04]:
IF1(false, 0, s(s(y_0))) → INT(s(0), s(s(y_0))) → IF1(false, 0, s(s(y_0))) → INT(s(0), s(s(y_0)))
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0)))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF1(false, 0, s(s(y_0))) → INT(s(0), s(s(y_0)))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(77) QDPQMonotonicMRRProof (EQUIVALENT transformation)
By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.
Strictly oriented rules of the TRS R:
p(s(0)) → 0
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 1
POL(IF1(x1, x2, x3)) = 1 + x2 + x3
POL(IF2(x1, x2, x3)) = 2 + x1 + x3
POL(IF_INT(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(INT(x1, x2)) = 2 + x2
POL(false) = 0
POL(p(x1)) = x1
POL(s(x1)) = 1 + x1
POL(true) = 1
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0)))
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF1(false, 0, s(s(y_0))) → INT(s(0), s(s(y_0)))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(79) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF_INT(false, false, s(0), s(s(y_0))) → IF2(false, s(0), s(s(y_0)))
IF2(false, s(0), s(s(x0))) → INT(0, s(p(s(x0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( INT(x1, x2) ) = x2 + 2 |
POL( p(x1) ) = max{0, x1 - 2} |
POL( IF_INT(x1, ..., x4) ) = 2x1 + x4 |
POL( IF1(x1, ..., x3) ) = x1 + x2 + x3 |
POL( IF2(x1, ..., x3) ) = max{0, x2 + x3 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
p(s(s(x))) → s(p(s(x)))
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_INT(true, false, 0, s(z0)) → IF1(false, 0, s(z0))
INT(s(0), s(s(y_0))) → IF_INT(false, false, s(0), s(s(y_0)))
INT(0, s(x0)) → IF_INT(true, false, 0, s(x0))
IF1(false, 0, s(s(y_0))) → INT(s(0), s(s(y_0)))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(81) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.
(82) TRUE
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(s(y_0)), s(x1)) → IF_INT(false, false, s(s(y_0)), s(x1))
IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1))
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
The TRS R consists of the following rules:
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(84) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
p(s(0)) → 0
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(IF2(x1, x2, x3)) = x1 + x2 + x3
POL(IF_INT(x1, x2, x3, x4)) = x1 + 2·x2 + x3 + x4
POL(INT(x1, x2)) = x1 + x2
POL(false) = 0
POL(p(x1)) = x1
POL(s(x1)) = 1 + 2·x1
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(s(y_0)), s(x1)) → IF_INT(false, false, s(s(y_0)), s(x1))
IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1))
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(86) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF_INT(false, false, s(s(x0)), s(z1)) → IF2(false, s(s(x0)), s(z1))
IF2(false, s(s(y0)), s(s(x0))) → INT(s(p(s(y0))), s(p(s(x0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( INT(x1, x2) ) = x1 + 1 |
POL( p(x1) ) = max{0, x1 - 1} |
POL( IF_INT(x1, ..., x4) ) = x3 + 1 |
POL( IF2(x1, ..., x3) ) = x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
p(s(s(x))) → s(p(s(x)))
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(s(s(y_0)), s(x1)) → IF_INT(false, false, s(s(y_0)), s(x1))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
The set Q consists of the following terms:
p(0)
p(s(0))
p(s(s(x0)))
We have to consider all minimal (P,Q,R)-chains.
(88) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(89) TRUE