YES Termination w.r.t. Q proof of AProVE_07_thiemann04.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
reach(x, y, i, h) → if1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
if1(true, b1, b2, b3, x, y, i, h) → true
if1(false, b1, b2, b3, x, y, i, h) → if2(b1, b2, b3, x, y, i, h)
if2(true, b2, b3, x, y, i, h) → false
if2(false, b2, b3, x, y, i, h) → if3(b2, b3, x, y, i, h)
if3(false, b3, x, y, i, h) → reach(x, y, rest(i), edge(from(i), to(i), h))
if3(true, b3, x, y, i, h) → if4(b3, x, y, i, h)
if4(true, x, y, i, h) → true
if4(false, x, y, i, h) → or(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
reach(x, y, i, h) → if1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
if1(true, b1, b2, b3, x, y, i, h) → true
if1(false, b1, b2, b3, x, y, i, h) → if2(b1, b2, b3, x, y, i, h)
if2(true, b2, b3, x, y, i, h) → false
if2(false, b2, b3, x, y, i, h) → if3(b2, b3, x, y, i, h)
if3(false, b3, x, y, i, h) → reach(x, y, rest(i), edge(from(i), to(i), h))
if3(true, b3, x, y, i, h) → if4(b3, x, y, i, h)
if4(true, x, y, i, h) → true
if4(false, x, y, i, h) → or(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)
UNION(edge(x, y, i), h) → UNION(i, h)
REACH(x, y, i, h) → IF1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
REACH(x, y, i, h) → EQ(x, y)
REACH(x, y, i, h) → ISEMPTY(i)
REACH(x, y, i, h) → EQ(x, from(i))
REACH(x, y, i, h) → FROM(i)
REACH(x, y, i, h) → EQ(y, to(i))
REACH(x, y, i, h) → TO(i)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
IF3(false, b3, x, y, i, h) → REST(i)
IF3(false, b3, x, y, i, h) → FROM(i)
IF3(false, b3, x, y, i, h) → TO(i)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → OR(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REST(i)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)
IF4(false, x, y, i, h) → TO(i)
IF4(false, x, y, i, h) → UNION(rest(i), h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
reach(x, y, i, h) → if1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
if1(true, b1, b2, b3, x, y, i, h) → true
if1(false, b1, b2, b3, x, y, i, h) → if2(b1, b2, b3, x, y, i, h)
if2(true, b2, b3, x, y, i, h) → false
if2(false, b2, b3, x, y, i, h) → if3(b2, b3, x, y, i, h)
if3(false, b3, x, y, i, h) → reach(x, y, rest(i), edge(from(i), to(i), h))
if3(true, b3, x, y, i, h) → if4(b3, x, y, i, h)
if4(true, x, y, i, h) → true
if4(false, x, y, i, h) → or(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 13 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNION(edge(x, y, i), h) → UNION(i, h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
reach(x, y, i, h) → if1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
if1(true, b1, b2, b3, x, y, i, h) → true
if1(false, b1, b2, b3, x, y, i, h) → if2(b1, b2, b3, x, y, i, h)
if2(true, b2, b3, x, y, i, h) → false
if2(false, b2, b3, x, y, i, h) → if3(b2, b3, x, y, i, h)
if3(false, b3, x, y, i, h) → reach(x, y, rest(i), edge(from(i), to(i), h))
if3(true, b3, x, y, i, h) → if4(b3, x, y, i, h)
if4(true, x, y, i, h) → true
if4(false, x, y, i, h) → or(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNION(edge(x, y, i), h) → UNION(i, h)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNION(edge(x, y, i), h) → UNION(i, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • UNION(edge(x, y, i), h) → UNION(i, h)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) YES

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
reach(x, y, i, h) → if1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
if1(true, b1, b2, b3, x, y, i, h) → true
if1(false, b1, b2, b3, x, y, i, h) → if2(b1, b2, b3, x, y, i, h)
if2(true, b2, b3, x, y, i, h) → false
if2(false, b2, b3, x, y, i, h) → if3(b2, b3, x, y, i, h)
if3(false, b3, x, y, i, h) → reach(x, y, rest(i), edge(from(i), to(i), h))
if3(true, b3, x, y, i, h) → if4(b3, x, y, i, h)
if4(true, x, y, i, h) → true
if4(false, x, y, i, h) → or(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • EQ(s(x), s(y)) → EQ(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, i, h) → IF1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
reach(x, y, i, h) → if1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
if1(true, b1, b2, b3, x, y, i, h) → true
if1(false, b1, b2, b3, x, y, i, h) → if2(b1, b2, b3, x, y, i, h)
if2(true, b2, b3, x, y, i, h) → false
if2(false, b2, b3, x, y, i, h) → if3(b2, b3, x, y, i, h)
if3(false, b3, x, y, i, h) → reach(x, y, rest(i), edge(from(i), to(i), h))
if3(true, b3, x, y, i, h) → if4(b3, x, y, i, h)
if4(true, x, y, i, h) → true
if4(false, x, y, i, h) → or(reach(x, y, rest(i), h), reach(to(i), y, union(rest(i), h), empty))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(22) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, i, h) → IF1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

We have to consider all minimal (P,Q,R)-chains.

(24) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

or(true, x0)
or(false, x0)
reach(x0, x1, x2, x3)
if1(true, x0, x1, x2, x3, x4, x5, x6)
if1(false, x0, x1, x2, x3, x4, x5, x6)
if2(true, x0, x1, x2, x3, x4, x5)
if2(false, x0, x1, x2, x3, x4, x5)
if3(false, x0, x1, x2, x3, x4)
if3(true, x0, x1, x2, x3, x4)
if4(true, x0, x1, x2, x3)
if4(false, x0, x1, x2, x3)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, i, h) → IF1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(empty) → true
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(26) QDPQMonotonicMRRProof (EQUIVALENT transformation)

By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.

Strictly oriented rules of the TRS R:

isEmpty(empty) → true

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(IF1(x1, x2, x3, x4, x5, x6, x7, x8)) = x2   
POL(IF2(x1, x2, x3, x4, x5, x6, x7)) = x1   
POL(IF3(x1, x2, x3, x4, x5, x6)) = 1   
POL(IF4(x1, x2, x3, x4, x5)) = 1   
POL(REACH(x1, x2, x3, x4)) = 1   
POL(edge(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(empty) = 0   
POL(eq(x1, x2)) = 2   
POL(false) = 1   
POL(from(x1)) = 2 + x1   
POL(isEmpty(x1)) = 1   
POL(rest(x1)) = 2 + x1   
POL(s(x1)) = x1   
POL(to(x1)) = 1 + x1   
POL(true) = 0   
POL(union(x1, x2)) = 2·x1 + x2   

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, i, h) → IF1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(28) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule REACH(x, y, i, h) → IF1(eq(x, y), isEmpty(i), eq(x, from(i)), eq(y, to(i)), x, y, i, h) at position [0] we obtained the following new rules [LPAR04]:

REACH(0, 0, y2, y3) → IF1(true, isEmpty(y2), eq(0, from(y2)), eq(0, to(y2)), 0, 0, y2, y3) → REACH(0, 0, y2, y3) → IF1(true, isEmpty(y2), eq(0, from(y2)), eq(0, to(y2)), 0, 0, y2, y3)
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3) → REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3) → REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3) → REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)
REACH(0, 0, y2, y3) → IF1(true, isEmpty(y2), eq(0, from(y2)), eq(0, to(y2)), 0, 0, y2, y3)
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(32) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, x, y, i, h) → REACH(to(i), y, union(rest(i), h), empty) at position [0] we obtained the following new rules [LPAR04]:

IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(rest(edge(x0, x1, x2)), y3), empty) → IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(rest(edge(x0, x1, x2)), y3), empty)

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(rest(edge(x0, x1, x2)), y3), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(34) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(rest(edge(x0, x1, x2)), y3), empty) at position [2,0] we obtained the following new rules [LPAR04]:

IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty) → IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(36) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF1(false, b1, b2, b3, x, y, i, h) → IF2(b1, b2, b3, x, y, i, h) we obtained the following new rules [LPAR04]:

IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2) → IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2) → IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h)
IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)
IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(38) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF2(false, b2, b3, x, y, i, h) → IF3(b2, b3, x, y, i, h) we obtained the following new rules [LPAR04]:

IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5) → IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5) → IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6) → IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)
IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(40) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(false, b3, x, y, i, h) → REACH(x, y, rest(i), edge(from(i), to(i), h)) we obtained the following new rules [LPAR04]:

IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4)) → IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4)) → IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5)) → IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)
IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(42) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(true, b3, x, y, i, h) → IF4(b3, x, y, i, h) we obtained the following new rules [LPAR04]:

IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4) → IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4) → IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5) → IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF4(false, x, y, i, h) → REACH(x, y, rest(i), h)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)
IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(44) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF4(false, x, y, i, h) → REACH(x, y, rest(i), h) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3) → IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3) → IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4) → IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty)
IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(46) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF4(false, y0, y1, edge(x0, x1, x2), y3) → REACH(x1, y1, union(x2, y3), empty) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty) → IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty) → IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty) → IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(48) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(49) Complex Obligation (AND)

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(51) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF1(false, y_0, y_2, y_4, s(z0), 0, z1, z2) → IF2(y_0, y_2, y_4, s(z0), 0, z1, z2) we obtained the following new rules [LPAR04]:

IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5) → IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(53) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule REACH(s(x0), 0, y2, y3) → IF1(false, isEmpty(y2), eq(s(x0), from(y2)), eq(0, to(y2)), s(x0), 0, y2, y3) at position [1] we obtained the following new rules [LPAR04]:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), from(edge(x0, x1, x2))), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), from(edge(x0, x1, x2))), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2)

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), from(edge(x0, x1, x2))), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(55) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), from(edge(x0, x1, x2))), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(57) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

isEmpty(empty)
isEmpty(edge(x0, x1, x2))

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), from(edge(x0, x1, x2))), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(59) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), from(edge(x0, x1, x2))), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2) at position [2,1] we obtained the following new rules [LPAR04]:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2)

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(61) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, to(edge(x0, x1, x2))), s(y0), 0, edge(x0, x1, x2), y2) at position [3,1] we obtained the following new rules [LPAR04]:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(63) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF3(false, z1, s(z2), 0, z3, z4) → REACH(s(z2), 0, rest(z3), edge(from(z3), to(z3), z4)) at position [2] we obtained the following new rules [LPAR04]:

IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3)) → IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3))
IF3(false, y0, s(y1), 0, empty, y3) → REACH(s(y1), 0, empty, edge(from(empty), to(empty), y3)) → IF3(false, y0, s(y1), 0, empty, y3) → REACH(s(y1), 0, empty, edge(from(empty), to(empty), y3))

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3))
IF3(false, y0, s(y1), 0, empty, y3) → REACH(s(y1), 0, empty, edge(from(empty), to(empty), y3))

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(65) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3))
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(67) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3)) at position [3,0] we obtained the following new rules [LPAR04]:

IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, to(edge(x0, x1, x2)), y3)) → IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, to(edge(x0, x1, x2)), y3))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, to(edge(x0, x1, x2)), y3))

The TRS R consists of the following rules:

from(edge(x, y, i)) → x
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
to(edge(x, y, i)) → y
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(69) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, to(edge(x0, x1, x2)), y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(71) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

from(edge(x0, x1, x2))

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, to(edge(x0, x1, x2)), y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(73) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, to(edge(x0, x1, x2)), y3)) at position [3,1] we obtained the following new rules [LPAR04]:

IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3)) → IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(75) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(77) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

to(edge(x0, x1, x2))

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(79) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, s(z1), 0, z2, z3) → REACH(s(z1), 0, rest(z2), z3) at position [2] we obtained the following new rules [LPAR04]:

IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2) → IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF4(false, s(y0), 0, empty, y2) → REACH(s(y0), 0, empty, y2) → IF4(false, s(y0), 0, empty, y2) → REACH(s(y0), 0, empty, y2)

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF4(false, s(y0), 0, empty, y2) → REACH(s(y0), 0, empty, y2)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(81) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(83) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(85) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

rest(edge(x0, x1, x2))
rest(empty)

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(87) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, s(z1), 0, edge(x2, x3, x4), z3) → REACH(x3, 0, union(x4, z3), empty) at position [2] we obtained the following new rules [LPAR04]:

IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty) → IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty) → IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))
IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(89) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF1(false, false, x1, x2, s(x3), 0, x4, x5) → IF2(false, x1, x2, s(x3), 0, x4, x5) we obtained the following new rules [LPAR04]:

IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))
IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(91) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF2(false, z1, z2, s(z3), 0, z4, z5) → IF3(z1, z2, s(z3), 0, z4, z5) we obtained the following new rules [LPAR04]:

IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6)

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))
IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(93) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(true, z1, s(z2), 0, z3, z4) → IF4(z1, s(z2), 0, z3, z4) we obtained the following new rules [LPAR04]:

IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6)

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))
IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6)
IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(95) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF4(false, s(y0), 0, edge(x0, x1, x2), y2) → REACH(s(y0), 0, x2, y2) we obtained the following new rules [LPAR04]:

IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4) → IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3))
IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6)
IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6)
IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(97) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF3(false, y0, s(y1), 0, edge(x0, x1, x2), y3) → REACH(s(y1), 0, x2, edge(x0, x1, y3)) we obtained the following new rules [LPAR04]:

IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5)) → IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6)
IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6)
IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(99) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF4(false, s(y0), 0, edge(y1, y2, empty), x0) → REACH(y2, 0, x0, empty) we obtained the following new rules [LPAR04]:

IF4(false, s(x0), 0, edge(x1, s(y_0), empty), edge(y_1, y_2, y_3)) → REACH(s(y_0), 0, edge(y_1, y_2, y_3), empty) → IF4(false, s(x0), 0, edge(x1, s(y_0), empty), edge(y_1, y_2, y_3)) → REACH(s(y_0), 0, edge(y_1, y_2, y_3), empty)

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6)
IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6)
IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), 0, edge(x1, s(y_0), empty), edge(y_1, y_2, y_3)) → REACH(s(y_0), 0, edge(y_1, y_2, y_3), empty)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(101) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF2(false, z0, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF3(z0, z1, s(z2), 0, edge(z3, z4, z5), z6) we obtained the following new rules [LPAR04]:

IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6)
IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6)

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6)
IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), 0, edge(x1, s(y_0), empty), edge(y_1, y_2, y_3)) → REACH(s(y_0), 0, edge(y_1, y_2, y_3), empty)
IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6)
IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(103) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF3(true, z1, s(z2), 0, edge(z3, z4, z5), z6) → IF4(z1, s(z2), 0, edge(z3, z4, z5), z6) we obtained the following new rules [LPAR04]:

IF3(true, false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF4(false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF3(true, false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF4(false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5)
IF3(true, false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5)) → IF4(false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5)) → IF3(true, false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5)) → IF4(false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5))

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), 0, edge(x1, s(y_0), empty), edge(y_1, y_2, y_3)) → REACH(s(y_0), 0, edge(y_1, y_2, y_3), empty)
IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6)
IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF4(false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5)
IF3(true, false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5)) → IF4(false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(105) QDPQMonotonicMRRProof (EQUIVALENT transformation)

By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.
Strictly oriented dependency pairs:

IF4(false, s(x0), 0, edge(x1, x2, edge(y_1, y_2, y_3)), x4) → REACH(s(x0), 0, edge(y_1, y_2, y_3), x4)
IF4(false, s(x0), 0, edge(x1, s(y_0), empty), edge(y_1, y_2, y_3)) → REACH(s(y_0), 0, edge(y_1, y_2, y_3), empty)

Strictly oriented rules of the TRS R:

union(empty, h) → h

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 2   
POL(IF1(x1, x2, x3, x4, x5, x6, x7, x8)) = 2·x1 + 2·x2 + 2·x5 + x7 + x8   
POL(IF2(x1, x2, x3, x4, x5, x6, x7)) = 2 + 2·x1 + 2·x4 + x6 + x7   
POL(IF3(x1, x2, x3, x4, x5, x6)) = 2 + 2·x3 + x4 + x5 + x6   
POL(IF4(x1, x2, x3, x4, x5)) = 2·x1 + 2·x2 + x3 + x4 + x5   
POL(REACH(x1, x2, x3, x4)) = 2·x1 + 2·x2 + x3 + x4   
POL(edge(x1, x2, x3)) = 1 + 2·x2 + x3   
POL(empty) = 1   
POL(eq(x1, x2)) = 2·x1 + x2   
POL(false) = 1   
POL(s(x1)) = x1   
POL(true) = 2   
POL(union(x1, x2)) = x1 + x2   

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))
IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6)
IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF4(false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5)
IF3(true, false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5)) → IF4(false, s(x1), 0, edge(x2, s(y_2), empty), edge(y_3, y_4, y_5))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(107) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6)
IF3(true, false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF4(false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(109) QDPQMonotonicMRRProof (EQUIVALENT transformation)

By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.
Strictly oriented dependency pairs:

IF2(false, true, x1, s(x2), 0, edge(x3, x4, x5), x6) → IF3(true, x1, s(x2), 0, edge(x3, x4, x5), x6)
IF3(true, false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5) → IF4(false, s(x1), 0, edge(x2, x3, edge(y_3, y_4, y_5)), x5)
IF2(false, false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(false, x1, s(x2), 0, edge(x3, x4, edge(y_4, y_5, y_6)), x6)


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 1   
POL(IF1(x1, x2, x3, x4, x5, x6, x7, x8)) = 1 + x1 + 2·x2 + x6 + 2·x7   
POL(IF2(x1, x2, x3, x4, x5, x6, x7)) = 1 + x1 + x4 + 2·x5 + 2·x6   
POL(IF3(x1, x2, x3, x4, x5, x6)) = 1 + 2·x4 + x5   
POL(IF4(x1, x2, x3, x4, x5)) = 1 + x4   
POL(REACH(x1, x2, x3, x4)) = 1 + 2·x1 + 2·x2 + 2·x3   
POL(edge(x1, x2, x3)) = 2 + 2·x2 + 2·x3   
POL(empty) = 0   
POL(eq(x1, x2)) = 2   
POL(false) = 1   
POL(s(x1)) = 1   
POL(true) = 2   
POL(union(x1, x2)) = x1   

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, s(z0), 0, edge(z1, z2, z3), z4)
IF4(false, s(y0), 0, edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, 0, edge(x0, x1, union(x2, x3)), empty)
REACH(s(y0), 0, edge(x0, x1, x2), y2) → IF1(false, false, eq(s(y0), x0), eq(0, x1), s(y0), 0, edge(x0, x1, x2), y2)
IF3(false, x0, s(x1), 0, edge(x2, x3, edge(y_1, y_2, y_3)), x5) → REACH(s(x1), 0, edge(y_1, y_2, y_3), edge(x2, x3, x5))

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
union(edge(x, y, i), h) → edge(x, y, union(i, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(111) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.

(112) TRUE

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(114) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF1(false, y_0, y_2, y_4, 0, s(z0), z1, z2) → IF2(y_0, y_2, y_4, 0, s(z0), z1, z2) we obtained the following new rules [LPAR04]:

IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5) → IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3)
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(116) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule REACH(0, s(x0), y2, y3) → IF1(false, isEmpty(y2), eq(0, from(y2)), eq(s(x0), to(y2)), 0, s(x0), y2, y3) at position [1] we obtained the following new rules [LPAR04]:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, from(edge(x0, x1, x2))), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, from(edge(x0, x1, x2))), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2)

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, from(edge(x0, x1, x2))), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(118) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, from(edge(x0, x1, x2))), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2) at position [2,1] we obtained the following new rules [LPAR04]:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2)

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(120) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), to(edge(x0, x1, x2))), 0, s(y0), edge(x0, x1, x2), y2) at position [3,1] we obtained the following new rules [LPAR04]:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4))
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(122) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF3(false, z1, 0, s(z2), z3, z4) → REACH(0, s(z2), rest(z3), edge(from(z3), to(z3), z4)) at position [2] we obtained the following new rules [LPAR04]:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3)) → IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3))
IF3(false, y0, 0, s(y1), empty, y3) → REACH(0, s(y1), empty, edge(from(empty), to(empty), y3)) → IF3(false, y0, 0, s(y1), empty, y3) → REACH(0, s(y1), empty, edge(from(empty), to(empty), y3))

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3))
IF3(false, y0, 0, s(y1), empty, y3) → REACH(0, s(y1), empty, edge(from(empty), to(empty), y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(124) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3))
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(126) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y3)) at position [3,0] we obtained the following new rules [LPAR04]:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, to(edge(x0, x1, x2)), y3)) → IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, to(edge(x0, x1, x2)), y3))

(127) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, to(edge(x0, x1, x2)), y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(128) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, to(edge(x0, x1, x2)), y3)) at position [3,1] we obtained the following new rules [LPAR04]:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3)) → IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(130) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, 0, s(z1), z2, z3) → REACH(0, s(z1), rest(z2), z3) at position [2] we obtained the following new rules [LPAR04]:

IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2) → IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), empty, y2) → REACH(0, s(y0), empty, y2) → IF4(false, 0, s(y0), empty, y2) → REACH(0, s(y0), empty, y2)

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), empty, y2) → REACH(0, s(y0), empty, y2)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(132) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(134) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF1(false, false, x1, x2, 0, s(x3), x4, x5) → IF2(false, x1, x2, 0, s(x3), x4, x5) we obtained the following new rules [LPAR04]:

IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5)
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(136) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF2(false, z1, z2, 0, s(z3), z4, z5) → IF3(z1, z2, 0, s(z3), z4, z5) we obtained the following new rules [LPAR04]:

IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(138) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(true, z1, 0, s(z2), z3, z4) → IF4(z1, 0, s(z2), z3, z4) we obtained the following new rules [LPAR04]:

IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(140) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF1(false, y_1, y_3, y_5, s(z0), s(z1), z2, z3) → IF2(y_1, y_3, y_5, s(z0), s(z1), z2, z3) we obtained the following new rules [LPAR04]:

IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6) → IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(142) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule REACH(s(x0), s(x1), y2, y3) → IF1(eq(x0, x1), isEmpty(y2), eq(s(x0), from(y2)), eq(s(x1), to(y2)), s(x0), s(x1), y2, y3) at position [1] we obtained the following new rules [LPAR04]:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), from(edge(x0, x1, x2))), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), from(edge(x0, x1, x2))), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3)

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), from(edge(x0, x1, x2))), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
rest(edge(x, y, i)) → i
rest(empty) → empty
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
from(edge(x, y, i)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
isEmpty(edge(x, y, i)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(144) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(145) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), from(edge(x0, x1, x2))), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
isEmpty(empty)
isEmpty(edge(x0, x1, x2))
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(146) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

isEmpty(empty)
isEmpty(edge(x0, x1, x2))

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), from(edge(x0, x1, x2))), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(148) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), from(edge(x0, x1, x2))), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3) at position [2,1] we obtained the following new rules [LPAR04]:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3)

(149) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(150) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), to(edge(x0, x1, x2))), s(y0), s(y1), edge(x0, x1, x2), y3) at position [3,1] we obtained the following new rules [LPAR04]:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)

(151) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(152) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, 0, s(z1), edge(x2, x3, x4), z3) → REACH(x3, s(z1), union(x4, z3), empty) at position [2] we obtained the following new rules [LPAR04]:

IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty) → IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty) → IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)

(153) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5))
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(154) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF3(false, z1, s(z2), s(z3), z4, z5) → REACH(s(z2), s(z3), rest(z4), edge(from(z4), to(z4), z5)) at position [2] we obtained the following new rules [LPAR04]:

IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y4)) → IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y4))
IF3(false, y0, s(y1), s(y2), empty, y4) → REACH(s(y1), s(y2), empty, edge(from(empty), to(empty), y4)) → IF3(false, y0, s(y1), s(y2), empty, y4) → REACH(s(y1), s(y2), empty, edge(from(empty), to(empty), y4))

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y4))
IF3(false, y0, s(y1), s(y2), empty, y4) → REACH(s(y1), s(y2), empty, edge(from(empty), to(empty), y4))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(156) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(157) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y4))
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(158) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(from(edge(x0, x1, x2)), to(edge(x0, x1, x2)), y4)) at position [3,0] we obtained the following new rules [LPAR04]:

IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, to(edge(x0, x1, x2)), y4)) → IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, to(edge(x0, x1, x2)), y4))

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, to(edge(x0, x1, x2)), y4))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
from(edge(x, y, i)) → x
to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(160) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, to(edge(x0, x1, x2)), y4))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
from(edge(x0, x1, x2))
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(162) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

from(edge(x0, x1, x2))

(163) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, to(edge(x0, x1, x2)), y4))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(164) TransformationProof (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, to(edge(x0, x1, x2)), y4)) at position [3,1] we obtained the following new rules [LPAR04]:

IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4)) → IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))

(165) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))

The TRS R consists of the following rules:

to(edge(x, y, i)) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(166) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(167) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
to(edge(x0, x1, x2))
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(168) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

to(edge(x0, x1, x2))

(169) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(170) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, s(z1), s(z2), z3, z4) → REACH(s(z1), s(z2), rest(z3), z4) at position [2] we obtained the following new rules [LPAR04]:

IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3) → IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF4(false, s(y0), s(y1), empty, y3) → REACH(s(y0), s(y1), empty, y3) → IF4(false, s(y0), s(y1), empty, y3) → REACH(s(y0), s(y1), empty, y3)

(171) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF4(false, s(y0), s(y1), empty, y3) → REACH(s(y0), s(y1), empty, y3)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(172) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rest(edge(x, y, i)) → i
rest(empty) → empty

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(174) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)
rest(edge(x0, x1, x2))
rest(empty)

We have to consider all minimal (P,Q,R)-chains.

(176) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

rest(edge(x0, x1, x2))
rest(empty)

(177) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty)
REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(178) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF4(false, s(z1), s(z2), edge(x2, x3, x4), z4) → REACH(x3, s(z2), union(x4, z4), empty) at position [2] we obtained the following new rules [LPAR04]:

IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty) → IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty) → IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)

(179) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(180) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF1(false, false, x1, x2, s(x3), s(x4), x5, x6) → IF2(false, x1, x2, s(x3), s(x4), x5, x6) we obtained the following new rules [LPAR04]:

IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)

(181) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(182) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF2(false, z1, z2, s(z3), s(z4), z5, z6) → IF3(z1, z2, s(z3), s(z4), z5, z6) we obtained the following new rules [LPAR04]:

IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)

(183) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(184) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(true, z1, s(z2), s(z3), z4, z5) → IF4(z1, s(z2), s(z3), z4, z5) we obtained the following new rules [LPAR04]:

IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)

(185) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(186) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF2(false, z0, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF3(z0, z1, 0, s(z2), edge(z3, z4, z5), z6) we obtained the following new rules [LPAR04]:

IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6)

(187) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(188) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF1(false, false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) → IF2(false, y_0, y_1, 0, s(z0), edge(z1, z2, z3), z4) we obtained the following new rules [LPAR04]:

IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF1(false, false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6)

(189) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2)
IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(190) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule REACH(0, s(y0), edge(x0, x1, x2), y2) → IF1(false, false, eq(0, x0), eq(s(y0), x1), 0, s(y0), edge(x0, x1, x2), y2) at position [2] we obtained the following new rules [LPAR04]:

REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4) → REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4) → REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(192) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF1(false, false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) we obtained the following new rules [LPAR04]:

IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)

(193) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(194) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF2(false, true, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(true, x1, 0, s(x2), edge(x3, x4, x5), x6) we obtained the following new rules [LPAR04]:

IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)

(195) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6)
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(196) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(true, z1, 0, s(z2), edge(z3, z4, z5), z6) → IF4(z1, 0, s(z2), edge(z3, z4, z5), z6) we obtained the following new rules [LPAR04]:

IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)

(197) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2)
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(198) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF4(false, 0, s(y0), edge(x0, x1, x2), y2) → REACH(0, s(y0), x2, y2) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4) → IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)

(199) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty)
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(200) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF4(false, 0, s(y0), edge(y1, y2, empty), x0) → REACH(y2, s(y0), x0, empty) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty) → IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)

(201) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(202) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF4(false, 0, s(y0), edge(y1, y2, edge(x0, x1, x2)), x3) → REACH(y2, s(y0), edge(x0, x1, union(x2, x3)), empty) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty) → IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)

(203) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3))
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(204) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF3(false, y0, 0, s(y1), edge(x0, x1, x2), y3) → REACH(0, s(y1), x2, edge(x0, x1, y3)) we obtained the following new rules [LPAR04]:

IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5)) → IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5)) → IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))

(205) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(206) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF4(false, s(y0), s(y1), edge(x0, x1, x2), y3) → REACH(s(y0), s(y1), x2, y3) we obtained the following new rules [LPAR04]:

IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5) → IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)

(207) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4))
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(208) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF3(false, y0, s(y1), s(y2), edge(x0, x1, x2), y4) → REACH(s(y1), s(y2), x2, edge(x0, x1, y4)) we obtained the following new rules [LPAR04]:

IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6)) → IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))

(209) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(210) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF4(false, s(y0), s(y1), edge(y2, y3, empty), x0) → REACH(y3, s(y1), x0, empty) we obtained the following new rules [LPAR04]:

IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty) → IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty) → IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty) → IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)

(211) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(212) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF2(false, z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF3(z0, z1, s(z2), s(z3), edge(z4, z5, z6), z7) we obtained the following new rules [LPAR04]:

IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)

(213) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)
IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(214) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF3(true, z1, s(z2), s(z3), edge(z4, z5, z6), z7) → IF4(z1, s(z2), s(z3), edge(z4, z5, z6), z7) we obtained the following new rules [LPAR04]:

IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5))

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)
IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5))

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(216) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF4(z0, 0, s(z1), edge(0, z2, z3), z4) we obtained the following new rules [LPAR04]:

IF3(true, false, 0, s(x1), edge(0, x2, x3), x4) → IF4(false, 0, s(x1), edge(0, x2, x3), x4) → IF3(true, false, 0, s(x1), edge(0, x2, x3), x4) → IF4(false, 0, s(x1), edge(0, x2, x3), x4)
IF3(true, false, 0, s(x1), edge(0, x2, empty), x4) → IF4(false, 0, s(x1), edge(0, x2, empty), x4) → IF3(true, false, 0, s(x1), edge(0, x2, empty), x4) → IF4(false, 0, s(x1), edge(0, x2, empty), x4)
IF3(true, false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF4(false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF3(true, false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF4(false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4)

(217) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)
IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5))
IF3(true, false, 0, s(x1), edge(0, x2, x3), x4) → IF4(false, 0, s(x1), edge(0, x2, x3), x4)
IF3(true, false, 0, s(x1), edge(0, x2, empty), x4) → IF4(false, 0, s(x1), edge(0, x2, empty), x4)
IF3(true, false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF4(false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(218) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF4(false, 0, s(z1), edge(0, z2, z3), z4) → REACH(0, s(z1), z3, z4) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(x0), edge(0, x1, edge(0, y_1, y_2)), x3) → REACH(0, s(x0), edge(0, y_1, y_2), x3) → IF4(false, 0, s(x0), edge(0, x1, edge(0, y_1, y_2)), x3) → REACH(0, s(x0), edge(0, y_1, y_2), x3)
IF4(false, 0, s(x0), edge(0, x1, edge(s(y_1), y_2, y_3)), x3) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), x3) → IF4(false, 0, s(x0), edge(0, x1, edge(s(y_1), y_2, y_3)), x3) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), x3)

(219) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)
IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5))
IF3(true, false, 0, s(x1), edge(0, x2, x3), x4) → IF4(false, 0, s(x1), edge(0, x2, x3), x4)
IF3(true, false, 0, s(x1), edge(0, x2, empty), x4) → IF4(false, 0, s(x1), edge(0, x2, empty), x4)
IF3(true, false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF4(false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4)
IF4(false, 0, s(x0), edge(0, x1, edge(0, y_1, y_2)), x3) → REACH(0, s(x0), edge(0, y_1, y_2), x3)
IF4(false, 0, s(x0), edge(0, x1, edge(s(y_1), y_2, y_3)), x3) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), x3)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(220) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF4(false, 0, s(z1), edge(0, z2, empty), z4) → REACH(z2, s(z1), z4, empty) we obtained the following new rules [LPAR04]:

IF4(false, 0, s(x0), edge(0, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x0), edge(y_2, y_3, y_4), empty) → IF4(false, 0, s(x0), edge(0, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x0), edge(y_2, y_3, y_4), empty)
IF4(false, 0, s(x0), edge(0, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x0), edge(0, y_1, y_2), empty) → IF4(false, 0, s(x0), edge(0, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x0), edge(0, y_1, y_2), empty)
IF4(false, 0, s(x0), edge(0, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), empty) → IF4(false, 0, s(x0), edge(0, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), empty)

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)
IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5))
IF3(true, false, 0, s(x1), edge(0, x2, x3), x4) → IF4(false, 0, s(x1), edge(0, x2, x3), x4)
IF3(true, false, 0, s(x1), edge(0, x2, empty), x4) → IF4(false, 0, s(x1), edge(0, x2, empty), x4)
IF3(true, false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF4(false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4)
IF4(false, 0, s(x0), edge(0, x1, edge(0, y_1, y_2)), x3) → REACH(0, s(x0), edge(0, y_1, y_2), x3)
IF4(false, 0, s(x0), edge(0, x1, edge(s(y_1), y_2, y_3)), x3) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), x3)
IF4(false, 0, s(x0), edge(0, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x0), edge(y_2, y_3, y_4), empty)
IF4(false, 0, s(x0), edge(0, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x0), edge(0, y_1, y_2), empty)
IF4(false, 0, s(x0), edge(0, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), empty)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(222) QDPQMonotonicMRRProof (EQUIVALENT transformation)

By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.
Strictly oriented dependency pairs:

IF4(false, s(y0), s(y1), edge(y2, y3, edge(x0, x1, x2)), x3) → REACH(y3, s(y1), edge(x0, x1, union(x2, x3)), empty)
IF2(false, true, z0, 0, s(z1), edge(0, z2, z3), z4) → IF3(true, z0, 0, s(z1), edge(0, z2, z3), z4)
IF4(false, 0, s(z1), edge(0, z2, edge(x3, x4, x5)), z4) → REACH(z2, s(z1), edge(x3, x4, union(x5, z4)), empty)
IF4(false, s(x0), s(x1), edge(x2, x3, edge(y_2, y_3, y_4)), x5) → REACH(s(x0), s(x1), edge(y_2, y_3, y_4), x5)
IF4(false, s(x0), s(x1), edge(x2, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x1), edge(y_2, y_3, y_4), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x1), edge(0, y_1, y_2), empty)
IF4(false, s(x0), s(x1), edge(x2, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), empty)
IF2(false, true, x1, s(x2), s(x3), edge(x4, x5, x6), x7) → IF3(true, x1, s(x2), s(x3), edge(x4, x5, x6), x7)
IF3(true, false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6) → IF4(false, s(x1), s(x2), edge(x3, x4, edge(y_4, y_5, y_6)), x6)
IF3(true, false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6)) → IF4(false, s(x1), s(x2), edge(x3, s(y_3), empty), edge(y_4, y_5, y_6))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(0, y_3, y_4))
IF3(true, false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5)) → IF4(false, s(x1), s(x2), edge(x3, 0, empty), edge(s(y_3), y_4, y_5))
IF4(false, 0, s(x0), edge(0, x1, edge(0, y_1, y_2)), x3) → REACH(0, s(x0), edge(0, y_1, y_2), x3)
IF4(false, 0, s(x0), edge(0, x1, edge(s(y_1), y_2, y_3)), x3) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), x3)
IF4(false, 0, s(x0), edge(0, s(y_0), empty), edge(y_2, y_3, y_4)) → REACH(s(y_0), s(x0), edge(y_2, y_3, y_4), empty)
IF4(false, 0, s(x0), edge(0, 0, empty), edge(0, y_1, y_2)) → REACH(0, s(x0), edge(0, y_1, y_2), empty)
IF4(false, 0, s(x0), edge(0, 0, empty), edge(s(y_1), y_2, y_3)) → REACH(0, s(x0), edge(s(y_1), y_2, y_3), empty)


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 2   
POL(IF1(x1, x2, x3, x4, x5, x6, x7, x8)) = 2 + x2 + x5 + 2·x7 + 2·x8   
POL(IF2(x1, x2, x3, x4, x5, x6, x7)) = 2·x1 + x4 + x5 + 2·x6 + 2·x7   
POL(IF3(x1, x2, x3, x4, x5, x6)) = 2 + x1 + x3 + 2·x5 + 2·x6   
POL(IF4(x1, x2, x3, x4, x5)) = 2·x2 + 2·x4 + 2·x5   
POL(REACH(x1, x2, x3, x4)) = 2 + x1 + x2 + 2·x3 + 2·x4   
POL(edge(x1, x2, x3)) = 2 + x2 + x3   
POL(empty) = 0   
POL(eq(x1, x2)) = 2   
POL(false) = 1   
POL(s(x1)) = 1   
POL(true) = 0   
POL(union(x1, x2)) = x1 + x2   

(223) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
REACH(0, s(y0), edge(0, y2, y3), y4) → IF1(false, false, true, eq(s(y0), y2), 0, s(y0), edge(0, y2, y3), y4)
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, true, y_0, 0, s(z0), edge(0, z1, z2), z3) → IF2(false, true, y_0, 0, s(z0), edge(0, z1, z2), z3)
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(0, y_1, y_2)), x5) → REACH(0, s(x1), edge(0, y_1, y_2), edge(x2, x3, x5))
IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(true, false, 0, s(x1), edge(0, x2, x3), x4) → IF4(false, 0, s(x1), edge(0, x2, x3), x4)
IF3(true, false, 0, s(x1), edge(0, x2, empty), x4) → IF4(false, 0, s(x1), edge(0, x2, empty), x4)
IF3(true, false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4) → IF4(false, 0, s(x1), edge(0, x2, edge(y_2, y_3, y_4)), x4)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(224) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 6 less nodes.

(225) Complex Obligation (AND)

(226) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(227) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(228) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(229) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

union(empty, x0)
union(edge(x0, x1, x2), x3)

(230) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)

The TRS R consists of the following rules:

eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
eq(0, s(x)) → false

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(231) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REACH(0, s(y0), edge(s(x0), y2, y3), y4) → IF1(false, false, false, eq(s(y0), y2), 0, s(y0), edge(s(x0), y2, y3), y4)
    The graph contains the following edges 1 >= 5, 2 >= 6, 3 >= 7, 4 >= 8

  • IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF3(false, x1, 0, s(x2), edge(x3, x4, x5), x6)
    The graph contains the following edges 1 >= 1, 2 >= 1, 3 >= 2, 4 >= 3, 5 >= 4, 6 >= 5, 7 >= 6

  • IF1(false, false, false, x1, 0, s(x2), edge(x3, x4, x5), x6) → IF2(false, false, x1, 0, s(x2), edge(x3, x4, x5), x6)
    The graph contains the following edges 1 >= 1, 2 >= 1, 3 >= 1, 1 >= 2, 2 >= 2, 3 >= 2, 4 >= 3, 5 >= 4, 6 >= 5, 7 >= 6, 8 >= 7

  • IF3(false, x0, 0, s(x1), edge(x2, x3, edge(s(y_1), y_2, y_3)), x5) → REACH(0, s(x1), edge(s(y_1), y_2, y_3), edge(x2, x3, x5))
    The graph contains the following edges 3 >= 1, 4 >= 2, 5 > 3

(232) YES

(233) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(234) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(235) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
union(empty, x0)
union(edge(x0, x1, x2), x3)

We have to consider all minimal (P,Q,R)-chains.

(236) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

union(empty, x0)
union(edge(x0, x1, x2), x3)

(237) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(238) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • IF2(false, false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7) → IF3(false, x1, s(x2), s(x3), edge(x4, x5, edge(y_5, y_6, y_7)), x7)
    The graph contains the following edges 1 >= 1, 2 >= 1, 3 >= 2, 4 >= 3, 5 >= 4, 6 >= 5, 7 >= 6

  • REACH(s(y0), s(y1), edge(x0, x1, x2), y3) → IF1(eq(y0, y1), false, eq(s(y0), x0), eq(s(y1), x1), s(y0), s(y1), edge(x0, x1, x2), y3)
    The graph contains the following edges 1 >= 5, 2 >= 6, 3 >= 7, 4 >= 8

  • IF3(false, x0, s(x1), s(x2), edge(x3, x4, edge(y_2, y_3, y_4)), x6) → REACH(s(x1), s(x2), edge(y_2, y_3, y_4), edge(x3, x4, x6))
    The graph contains the following edges 3 >= 1, 4 >= 2, 5 > 3

  • IF1(false, false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5) → IF2(false, y_1, y_2, s(z0), s(z1), edge(z2, z3, z4), z5)
    The graph contains the following edges 1 >= 1, 2 >= 1, 3 >= 2, 4 >= 3, 5 >= 4, 6 >= 5, 7 >= 6, 8 >= 7

(239) YES