(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(add(n, x), y) → APP(x, y)
REVERSE(add(n, x)) → APP(reverse(x), add(n, nil))
REVERSE(add(n, x)) → REVERSE(x)
SHUFFLE(x) → SHUFF(x, nil)
SHUFF(x, y) → IF(null(x), x, y, app(y, add(head(x), nil)))
SHUFF(x, y) → NULL(x)
SHUFF(x, y) → APP(y, add(head(x), nil))
SHUFF(x, y) → HEAD(x)
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
IF(false, x, y, z) → REVERSE(tail(x))
IF(false, x, y, z) → TAIL(x)
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(add(n, x), y) → APP(x, y)
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(add(n, x), y) → APP(x, y)
R is empty.
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(add(n, x), y) → APP(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP(add(n, x), y) → APP(x, y)
The graph contains the following edges 1 > 1, 2 >= 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE(add(n, x)) → REVERSE(x)
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE(add(n, x)) → REVERSE(x)
R is empty.
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE(add(n, x)) → REVERSE(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- REVERSE(add(n, x)) → REVERSE(x)
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(x, y) → IF(null(x), x, y, app(y, add(head(x), nil)))
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
tail(add(n, x)) → x
tail(nil) → nil
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(x) → shuff(x, nil)
shuff(x, y) → if(null(x), x, y, app(y, add(head(x), nil)))
if(true, x, y, z) → y
if(false, x, y, z) → shuff(reverse(tail(x)), z)
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(x, y) → IF(null(x), x, y, app(y, add(head(x), nil)))
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
shuffle(x0)
shuff(x0, x1)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(x, y) → IF(null(x), x, y, app(y, add(head(x), nil)))
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(26) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
SHUFF(
x,
y) →
IF(
null(
x),
x,
y,
app(
y,
add(
head(
x),
nil))) at position [0] we obtained the following new rules [LPAR04]:
SHUFF(nil, y1) → IF(true, nil, y1, app(y1, add(head(nil), nil))) → SHUFF(nil, y1) → IF(true, nil, y1, app(y1, add(head(nil), nil)))
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))) → SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil)))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(nil, y1) → IF(true, nil, y1, app(y1, add(head(nil), nil)))
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil)))
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil)))
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
The TRS R consists of the following rules:
null(nil) → true
null(add(n, x)) → false
head(add(n, x)) → n
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil)))
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
The TRS R consists of the following rules:
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
head(add(n, x)) → n
The set Q consists of the following terms:
null(nil)
null(add(x0, x1))
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(32) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
null(nil)
null(add(x0, x1))
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil)))
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
The TRS R consists of the following rules:
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
head(add(n, x)) → n
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(34) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
SHUFF(
add(
x0,
x1),
y1) →
IF(
false,
add(
x0,
x1),
y1,
app(
y1,
add(
head(
add(
x0,
x1)),
nil))) at position [3,1,0] we obtained the following new rules [LPAR04]:
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) → SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
head(add(n, x)) → n
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
head(add(x0, x1))
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head(add(x0, x1))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → SHUFF(reverse(tail(x)), z)
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(40) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF(
false,
x,
y,
z) →
SHUFF(
reverse(
tail(
x)),
z) at position [0] we obtained the following new rules [LPAR04]:
IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2) → IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2)
IF(false, nil, y1, y2) → SHUFF(reverse(nil), y2) → IF(false, nil, y1, y2) → SHUFF(reverse(nil), y2)
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2)
IF(false, nil, y1, y2) → SHUFF(reverse(nil), y2)
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(42) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2)
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
tail(add(n, x)) → x
tail(nil) → nil
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(44) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2)
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
tail(add(x0, x1))
tail(nil)
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(46) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail(add(x0, x1))
tail(nil)
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2)
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(48) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(false, add(x0, x1), y1, y2) → SHUFF(reverse(x1), y2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( SHUFF(x1, x2) ) = 2x1 + 2 |
POL( add(x1, x2) ) = x2 + 1 |
POL( app(x1, x2) ) = x1 + x2 |
POL( IF(x1, ..., x4) ) = 2x1 + 2x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFF(add(x0, x1), y1) → IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
The set Q consists of the following terms:
app(nil, x0)
app(add(x0, x1), x2)
reverse(nil)
reverse(add(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(50) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(51) TRUE