(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
TIMES(s(x), y) → TIMES(x, y)
EXP(x, s(y)) → TIMES(x, exp(x, y))
EXP(x, s(y)) → EXP(x, y)
GE(s(x), s(y)) → GE(x, y)
TOWER(x, y) → TOWERITER(0, x, y, s(0))
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
TOWERITER(c, x, y, z) → GE(c, x)
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
HELP(false, c, x, y, z) → EXP(y, z)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(x), s(y)) → GE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
R is empty.
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS(s(x), y) → PLUS(x, y)
The graph contains the following edges 1 > 1, 2 >= 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(x), y) → TIMES(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(x), y) → TIMES(x, y)
R is empty.
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(s(x), y) → TIMES(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TIMES(s(x), y) → TIMES(x, y)
The graph contains the following edges 1 > 1, 2 >= 2
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EXP(x, s(y)) → EXP(x, y)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EXP(x, s(y)) → EXP(x, y)
R is empty.
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EXP(x, s(y)) → EXP(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EXP(x, s(y)) → EXP(x, y)
The graph contains the following edges 1 >= 1, 2 > 2
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
tower(x, y) → towerIter(0, x, y, s(0))
towerIter(c, x, y, z) → help(ge(c, x), c, x, y, z)
help(true, c, x, y, z) → z
help(false, c, x, y, z) → towerIter(s(c), x, y, exp(y, z))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tower(x0, x1)
towerIter(x0, x1, x2, x3)
help(true, x0, x1, x2, x3)
help(false, x0, x1, x2, x3)
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(40) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
HELP(
false,
c,
x,
y,
z) →
TOWERITER(
s(
c),
x,
y,
exp(
y,
z)) the following chains were created:
- We consider the chain TOWERITER(x4, x5, x6, x7) → HELP(ge(x4, x5), x4, x5, x6, x7), HELP(false, x8, x9, x10, x11) → TOWERITER(s(x8), x9, x10, exp(x10, x11)) which results in the following constraint:
(1) (HELP(ge(x4, x5), x4, x5, x6, x7)=HELP(false, x8, x9, x10, x11) ⇒ HELP(false, x8, x9, x10, x11)≥TOWERITER(s(x8), x9, x10, exp(x10, x11))) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (ge(x4, x5)=false ⇒ HELP(false, x4, x5, x6, x7)≥TOWERITER(s(x4), x5, x6, exp(x6, x7))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x4, x5)=false which results in the following new constraints:
(3) (false=false ⇒ HELP(false, 0, s(x25), x6, x7)≥TOWERITER(s(0), s(x25), x6, exp(x6, x7))) |
(4) (ge(x27, x26)=false∧(∀x28,x29:ge(x27, x26)=false ⇒ HELP(false, x27, x26, x28, x29)≥TOWERITER(s(x27), x26, x28, exp(x28, x29))) ⇒ HELP(false, s(x27), s(x26), x6, x7)≥TOWERITER(s(s(x27)), s(x26), x6, exp(x6, x7))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (HELP(false, 0, s(x25), x6, x7)≥TOWERITER(s(0), s(x25), x6, exp(x6, x7))) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (∀x28,x29:ge(x27, x26)=false ⇒ HELP(false, x27, x26, x28, x29)≥TOWERITER(s(x27), x26, x28, exp(x28, x29))) with σ = [x28 / x6, x29 / x7] which results in the following new constraint:
(6) (HELP(false, x27, x26, x6, x7)≥TOWERITER(s(x27), x26, x6, exp(x6, x7)) ⇒ HELP(false, s(x27), s(x26), x6, x7)≥TOWERITER(s(s(x27)), s(x26), x6, exp(x6, x7))) |
For Pair
TOWERITER(
c,
x,
y,
z) →
HELP(
ge(
c,
x),
c,
x,
y,
z) the following chains were created:
- We consider the chain HELP(false, x12, x13, x14, x15) → TOWERITER(s(x12), x13, x14, exp(x14, x15)), TOWERITER(x16, x17, x18, x19) → HELP(ge(x16, x17), x16, x17, x18, x19) which results in the following constraint:
(1) (TOWERITER(s(x12), x13, x14, exp(x14, x15))=TOWERITER(x16, x17, x18, x19) ⇒ TOWERITER(x16, x17, x18, x19)≥HELP(ge(x16, x17), x16, x17, x18, x19)) |
We simplified constraint (1) using rules (I), (II), (III), (IV) which results in the following new constraint:
(2) (TOWERITER(s(x12), x13, x14, x19)≥HELP(ge(s(x12), x13), s(x12), x13, x14, x19)) |
To summarize, we get the following constraints P
≥ for the following pairs.
- HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
- (HELP(false, 0, s(x25), x6, x7)≥TOWERITER(s(0), s(x25), x6, exp(x6, x7)))
- (HELP(false, x27, x26, x6, x7)≥TOWERITER(s(x27), x26, x6, exp(x6, x7)) ⇒ HELP(false, s(x27), s(x26), x6, x7)≥TOWERITER(s(s(x27)), s(x26), x6, exp(x6, x7)))
- TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
- (TOWERITER(s(x12), x13, x14, x19)≥HELP(ge(s(x12), x13), s(x12), x13, x14, x19))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 1
POL(HELP(x1, x2, x3, x4, x5)) = -x1 - x2 + x3 + x4
POL(TOWERITER(x1, x2, x3, x4)) = -x1 + x2 + x3
POL(c) = -1
POL(exp(x1, x2)) = 1 + x2
POL(false) = 1
POL(ge(x1, x2)) = 1
POL(plus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(times(x1, x2)) = 0
POL(true) = 1
The following pairs are in P
>:
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
The following pairs are in P
bound:
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
The following rules are usable:
true → ge(x, 0)
false → ge(0, s(x))
ge(x, y) → ge(s(x), s(y))
(41) Complex Obligation (AND)
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HELP(false, c, x, y, z) → TOWERITER(s(c), x, y, exp(y, z))
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(44) TRUE
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TOWERITER(c, x, y, z) → HELP(ge(c, x), c, x, y, z)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(46) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(47) TRUE