YES
0 QTRS
↳1 DependencyPairsProof (⇔, 0 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 QDP
↳5 QDPOrderProof (⇔, 0 ms)
↳6 QDP
↳7 QDPOrderProof (⇔, 76 ms)
↳8 QDP
↳9 QDPSizeChangeProof (⇔, 0 ms)
↳10 YES
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
H(c(x, y), c(s(z), z), t(w)) → T(t(c(x, c(y, t(w)))))
H(c(x, y), c(s(z), z), t(w)) → T(c(x, c(y, t(w))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
H(x, c(y, z), t(w)) → T(c(t(w), w))
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
H(c(s(x), c(s(0), y)), z, t(x)) → T(t(c(x, s(x))))
H(c(s(x), c(s(0), y)), z, t(x)) → T(c(x, s(x)))
T(t(x)) → T(c(t(x), x))
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
POL(0) = 0
POL(H(x1, x2, x3)) = x1 + x2
POL(c(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(t(x1)) = x1
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
The value of delta used in the strict ordering is 8.
POL(0) = [2]
POL(H(x1, x2, x3)) = [4]x1 + [2]x2
POL(c(x1, x2)) = [4]x1 + x2
POL(s(x1)) = [1/2]x1
POL(t(x1)) = [4]
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
From the DPs we obtained the following set of size-change graphs: