(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → nil
ap(ap(ap(if, false), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → nil
ap(ap(ap(if, false), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(map, f), xs) → AP(ap(if, ap(isEmpty, xs)), f)
AP(ap(map, f), xs) → AP(if, ap(isEmpty, xs))
AP(ap(map, f), xs) → AP(isEmpty, xs)
AP(ap(ap(if, false), f), xs) → AP(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
AP(ap(ap(if, false), f), xs) → AP(cons, ap(f, ap(last, xs)))
AP(ap(ap(if, false), f), xs) → AP(f, ap(last, xs))
AP(ap(ap(if, false), f), xs) → AP(last, xs)
AP(ap(ap(if, false), f), xs) → AP(ap(map, f), ap(dropLast, xs))
AP(ap(ap(if, false), f), xs) → AP(map, f)
AP(ap(ap(if, false), f), xs) → AP(dropLast, xs)
AP(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(last, ap(ap(cons, y), ys))
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(dropLast, ap(ap(cons, y), ys))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → nil
ap(ap(ap(if, false), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(dropLast, ap(ap(cons, y), ys))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → nil
ap(ap(ap(if, false), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(dropLast, ap(ap(cons, y), ys))
R is empty.
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(10) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
dropLast1(cons(x, cons(y, ys))) → dropLast1(cons(y, ys))
R is empty.
The set Q consists of the following terms:
map(x0, x1)
if(true, x0, x1)
if(false, x0, x1)
isEmpty(nil)
isEmpty(cons(x0, x1))
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(12) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
map(x0, x1)
if(true, x0, x1)
if(false, x0, x1)
isEmpty(nil)
isEmpty(cons(x0, x1))
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
dropLast1(cons(x, cons(y, ys))) → dropLast1(cons(y, ys))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- dropLast1(cons(x, cons(y, ys))) → dropLast1(cons(y, ys))
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(last, ap(ap(cons, y), ys))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → nil
ap(ap(ap(if, false), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → AP(last, ap(ap(cons, y), ys))
R is empty.
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(19) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
last1(cons(x, cons(y, ys))) → last1(cons(y, ys))
R is empty.
The set Q consists of the following terms:
map(x0, x1)
if(true, x0, x1)
if(false, x0, x1)
isEmpty(nil)
isEmpty(cons(x0, x1))
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(21) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
map(x0, x1)
if(true, x0, x1)
if(false, x0, x1)
isEmpty(nil)
isEmpty(cons(x0, x1))
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
last1(cons(x, cons(y, ys))) → last1(cons(y, ys))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- last1(cons(x, cons(y, ys))) → last1(cons(y, ys))
The graph contains the following edges 1 > 1
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(if, false), f), xs) → AP(f, ap(last, xs))
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(ap(if, false), f), xs) → AP(ap(map, f), ap(dropLast, xs))
The TRS R consists of the following rules:
ap(ap(map, f), xs) → ap(ap(ap(if, ap(isEmpty, xs)), f), xs)
ap(ap(ap(if, true), f), xs) → nil
ap(ap(ap(if, false), f), xs) → ap(ap(cons, ap(f, ap(last, xs))), ap(ap(map, f), ap(dropLast, xs)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(ap(if, false), f), xs) → AP(f, ap(last, xs))
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(ap(if, false), f), xs) → AP(ap(map, f), ap(dropLast, xs))
The TRS R consists of the following rules:
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(28) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
AP(ap(ap(if, false), f), xs) → AP(f, ap(last, xs))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AP(
x1,
x2) =
x1
ap(
x1,
x2) =
ap(
x2)
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
dummyConstant=1
ap_1=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(ap(if, false), f), xs) → AP(ap(map, f), ap(dropLast, xs))
The TRS R consists of the following rules:
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
ap(last, ap(ap(cons, x), nil)) → x
ap(last, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(last, ap(ap(cons, y), ys))
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AP(ap(map, f), xs) → AP(ap(ap(if, ap(isEmpty, xs)), f), xs)
AP(ap(ap(if, false), f), xs) → AP(ap(map, f), ap(dropLast, xs))
The TRS R consists of the following rules:
ap(dropLast, nil) → nil
ap(dropLast, ap(ap(cons, x), nil)) → nil
ap(dropLast, ap(ap(cons, x), ap(ap(cons, y), ys))) → ap(ap(cons, x), ap(dropLast, ap(ap(cons, y), ys)))
ap(isEmpty, nil) → true
ap(isEmpty, ap(ap(cons, x), xs)) → false
The set Q consists of the following terms:
ap(ap(map, x0), x1)
ap(ap(ap(if, true), x0), x1)
ap(ap(ap(if, false), x0), x1)
ap(isEmpty, nil)
ap(isEmpty, ap(ap(cons, x0), x1))
ap(last, ap(ap(cons, x0), nil))
ap(last, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
ap(dropLast, nil)
ap(dropLast, ap(ap(cons, x0), nil))
ap(dropLast, ap(ap(cons, x0), ap(ap(cons, x1), x2)))
We have to consider all minimal (P,Q,R)-chains.
(32) ATransformationProof (EQUIVALENT transformation)
We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(f, xs) → if1(isEmpty(xs), f, xs)
if1(false, f, xs) → map1(f, dropLast(xs))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, nil)) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
isEmpty(nil) → true
isEmpty(cons(x, xs)) → false
The set Q consists of the following terms:
map(x0, x1)
if(true, x0, x1)
if(false, x0, x1)
isEmpty(nil)
isEmpty(cons(x0, x1))
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(34) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
map(x0, x1)
if(true, x0, x1)
if(false, x0, x1)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(f, xs) → if1(isEmpty(xs), f, xs)
if1(false, f, xs) → map1(f, dropLast(xs))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, nil)) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
isEmpty(nil) → true
isEmpty(cons(x, xs)) → false
The set Q consists of the following terms:
isEmpty(nil)
isEmpty(cons(x0, x1))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(36) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
map1(
f,
xs) →
if1(
isEmpty(
xs),
f,
xs) at position [0] we obtained the following new rules [LPAR04]:
map1(y0, nil) → if1(true, y0, nil) → map1(y0, nil) → if1(true, y0, nil)
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1)) → map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
if1(false, f, xs) → map1(f, dropLast(xs))
map1(y0, nil) → if1(true, y0, nil)
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, nil)) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
isEmpty(nil) → true
isEmpty(cons(x, xs)) → false
The set Q consists of the following terms:
isEmpty(nil)
isEmpty(cons(x0, x1))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(38) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
if1(false, f, xs) → map1(f, dropLast(xs))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, nil)) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
isEmpty(nil) → true
isEmpty(cons(x, xs)) → false
The set Q consists of the following terms:
isEmpty(nil)
isEmpty(cons(x0, x1))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(40) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
if1(false, f, xs) → map1(f, dropLast(xs))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, nil)) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
The set Q consists of the following terms:
isEmpty(nil)
isEmpty(cons(x0, x1))
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(42) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(nil)
isEmpty(cons(x0, x1))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
if1(false, f, xs) → map1(f, dropLast(xs))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, nil)) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
The set Q consists of the following terms:
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(44) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
dropLast(cons(x, nil)) → nil
Used ordering: Polynomial interpretation [POLO]:
POL(cons(x1, x2)) = 2 + 2·x1 + 2·x2
POL(dropLast(x1)) = x1
POL(false) = 0
POL(if1(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(map1(x1, x2)) = 1 + x1 + x2
POL(nil) = 1
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
if1(false, f, xs) → map1(f, dropLast(xs))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
The set Q consists of the following terms:
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(46) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
if1(false, f, xs) → map1(f, dropLast(xs))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(map1(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(if1(x1, x2, x3)) = | 1 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(dropLast(x1)) = | | + | | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
dropLast(nil) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
map1(y0, cons(x0, x1)) → if1(false, y0, cons(x0, x1))
The TRS R consists of the following rules:
dropLast(nil) → nil
dropLast(cons(x, cons(y, ys))) → cons(x, dropLast(cons(y, ys)))
The set Q consists of the following terms:
dropLast(nil)
dropLast(cons(x0, nil))
dropLast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(48) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(49) TRUE