(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
MARK(s(x)) → MARK(x)
MARK(minus(x, y)) → MINUS_ACTIVE(x, y)
MARK(ge(x, y)) → GE_ACTIVE(x, y)
GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
MARK(if(x, y, z)) → MARK(x)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
DIV_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
IF_ACTIVE(true, x, y) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(14) YES
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(s(x)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( DIV_ACTIVE(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( IF_ACTIVE(x1, ..., x3) ) = 2x1 + 2x2 + 2x3 + 2 |
POL( minus_active(x1, x2) ) = 0 |
POL( ge_active(x1, x2) ) = x1 |
POL( div(x1, x2) ) = 2x1 + x2 |
POL( div_active(x1, x2) ) = 2x1 + x2 |
POL( if_active(x1, ..., x3) ) = 2x1 + x2 + 2x3 |
POL( if(x1, ..., x3) ) = 2x1 + x2 + 2x3 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(0) → 0
mark(s(x)) → s(mark(x))
mark(minus(x, y)) → minus_active(x, y)
mark(ge(x, y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
mark(if(x, y, z)) → if_active(mark(x), y, z)
if_active(false, x, y) → mark(y)
ge_active(x, 0) → true
ge_active(0, s(y)) → false
ge_active(s(x), s(y)) → ge_active(x, y)
ge_active(x, y) → ge(x, y)
div_active(0, s(y)) → 0
div_active(x, y) → div(x, y)
if_active(x, y, z) → if(x, y, z)
minus_active(0, y) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
minus_active(x, y) → minus(x, y)
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( DIV_ACTIVE(x1, x2) ) = 2x2 + 2 |
POL( IF_ACTIVE(x1, ..., x3) ) = x1 + x2 + x3 |
POL( minus_active(x1, x2) ) = 2 |
POL( ge_active(x1, x2) ) = 2 |
POL( div(x1, x2) ) = x1 + 2x2 + 1 |
POL( div_active(x1, x2) ) = x1 + 2x2 + 1 |
POL( if_active(x1, ..., x3) ) = x1 + x2 + x3 + 1 |
POL( if(x1, ..., x3) ) = x1 + x2 + x3 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(0) → 0
mark(s(x)) → s(mark(x))
mark(minus(x, y)) → minus_active(x, y)
mark(ge(x, y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
mark(if(x, y, z)) → if_active(mark(x), y, z)
if_active(false, x, y) → mark(y)
ge_active(x, 0) → true
ge_active(0, s(y)) → false
ge_active(s(x), s(y)) → ge_active(x, y)
ge_active(x, y) → ge(x, y)
div_active(0, s(y)) → 0
div_active(x, y) → div(x, y)
if_active(x, y, z) → if(x, y, z)
minus_active(0, y) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
minus_active(x, y) → minus(x, y)
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
The TRS R consists of the following rules:
minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(21) TRUE