(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → QUOT(x, y, y)
QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
The TRS R consists of the following rules:
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOT(s(x), s(y), z) → QUOT(x, y, z)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( DIV(x1, x2) ) = x1 + x2 + 2 |
POL( QUOT(x1, ..., x3) ) = x1 + x3 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → QUOT(x, y, y)
QUOT(x, 0, s(z)) → DIV(x, s(z))
The TRS R consists of the following rules:
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
DIV(
x,
y) →
QUOT(
x,
y,
y) we obtained the following new rules [LPAR04]:
DIV(y_0, s(y_1)) → QUOT(y_0, s(y_1), s(y_1)) → DIV(y_0, s(y_1)) → QUOT(y_0, s(y_1), s(y_1))
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(y_0, s(y_1)) → QUOT(y_0, s(y_1), s(y_1))
The TRS R consists of the following rules:
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(8) TRUE