(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The TRS R 2 is
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The signature Sigma is {
process,
if1,
if2,
if3}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
LEQ(s(n), s(m)) → LEQ(n, m)
LENGTH(cons(h, t)) → LENGTH(t)
APP(cons(h, t), x) → APP(t, x)
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
PROCESS(store, m) → LEQ(m, length(store))
PROCESS(store, m) → LENGTH(store)
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF1(store, m, true) → FSTSPLIT(m, store)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF1(store, m, false) → APP(map_f(self, nil), store)
IF1(store, m, false) → MAP_F(self, nil)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
IF2(store, m, false) → MAP_F(self, nil)
IF2(store, m, false) → SNDSPLIT(m, store)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
IF3(store, m, false) → APP(map_f(self, nil), store)
IF3(store, m, false) → MAP_F(self, nil)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 15 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(cons(h, t), x) → APP(t, x)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(cons(h, t), x) → APP(t, x)
R is empty.
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(cons(h, t), x) → APP(t, x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP(cons(h, t), x) → APP(t, x)
The graph contains the following edges 1 > 1, 2 >= 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
R is empty.
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
The graph contains the following edges 1 >= 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(h, t)) → LENGTH(t)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(h, t)) → LENGTH(t)
R is empty.
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(h, t)) → LENGTH(t)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(cons(h, t)) → LENGTH(t)
The graph contains the following edges 1 > 1
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LEQ(s(n), s(m)) → LEQ(n, m)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LEQ(s(n), s(m)) → LEQ(n, m)
R is empty.
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LEQ(s(n), s(m)) → LEQ(n, m)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LEQ(s(n), s(m)) → LEQ(n, m)
The graph contains the following edges 1 > 1, 2 > 2
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
R is empty.
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
The graph contains the following edges 1 > 1, 2 > 2
(41) YES
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(43) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
R is empty.
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(45) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
The graph contains the following edges 1 > 1, 2 > 2
(48) YES
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
The TRS R consists of the following rules:
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(50) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
The TRS R consists of the following rules:
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
We have to consider all minimal (P,Q,R)-chains.
(52) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
The TRS R consists of the following rules:
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(54) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF2(
store,
m,
false) →
PROCESS(
app(
map_f(
self,
nil),
sndsplit(
m,
store)),
m) at position [0,0] we obtained the following new rules [LPAR04]:
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m) → IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
The TRS R consists of the following rules:
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(56) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF1(
store,
m,
false) →
IF3(
store,
m,
empty(
fstsplit(
m,
app(
map_f(
self,
nil),
store)))) at position [2,0,1,0] we obtained the following new rules [LPAR04]:
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store)))) → IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
The TRS R consists of the following rules:
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(58) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF3(
store,
m,
false) →
PROCESS(
sndsplit(
m,
app(
map_f(
self,
nil),
store)),
m) at position [0,1,0] we obtained the following new rules [LPAR04]:
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m) → IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
The TRS R consists of the following rules:
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(60) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
The TRS R consists of the following rules:
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
(62) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
map_f(x0, nil)
map_f(x0, cons(x1, x2))
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
The TRS R consists of the following rules:
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(64) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF2(
store,
m,
false) →
PROCESS(
app(
nil,
sndsplit(
m,
store)),
m) at position [0] we obtained the following new rules [LPAR04]:
IF2(store, m, false) → PROCESS(sndsplit(m, store), m) → IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(66) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF1(
store,
m,
false) →
IF3(
store,
m,
empty(
fstsplit(
m,
app(
nil,
store)))) at position [2,0,1] we obtained the following new rules [LPAR04]:
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store))) → IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
The TRS R consists of the following rules:
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(68) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF3(
store,
m,
false) →
PROCESS(
sndsplit(
m,
app(
nil,
store)),
m) at position [0,1] we obtained the following new rules [LPAR04]:
IF3(store, m, false) → PROCESS(sndsplit(m, store), m) → IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(70) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
(72) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
app(nil, x0)
app(cons(x0, x1), x2)
(73) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(74) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF1(
store,
m,
true) →
IF2(
store,
m,
empty(
fstsplit(
m,
store))) at position [2] we obtained the following new rules [LPAR04]:
IF1(x0, 0, true) → IF2(x0, 0, empty(nil)) → IF1(x0, 0, true) → IF2(x0, 0, empty(nil))
IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil)) → IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2)))) → IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
(75) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(x0, 0, true) → IF2(x0, 0, empty(nil))
IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(76) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(77) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(78) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF1(
cons(
x1,
x2),
s(
x0),
true) →
IF2(
cons(
x1,
x2),
s(
x0),
empty(
cons(
x1,
fstsplit(
x0,
x2)))) at position [2] we obtained the following new rules [LPAR04]:
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false) → IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
(79) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(80) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF1(
store,
m,
false) →
IF3(
store,
m,
empty(
fstsplit(
m,
store))) at position [2] we obtained the following new rules [LPAR04]:
IF1(x0, 0, false) → IF3(x0, 0, empty(nil)) → IF1(x0, 0, false) → IF3(x0, 0, empty(nil))
IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil)) → IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2)))) → IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
(81) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(x0, 0, false) → IF3(x0, 0, empty(nil))
IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(82) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(84) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(86) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF1(
cons(
x1,
x2),
s(
x0),
false) →
IF3(
cons(
x1,
x2),
s(
x0),
empty(
cons(
x1,
fstsplit(
x0,
x2)))) at position [2] we obtained the following new rules [LPAR04]:
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false) → IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(88) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(90) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
(91) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(92) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
PROCESS(
store,
m) →
IF1(
store,
m,
leq(
m,
length(
store))) at position [2] we obtained the following new rules [LPAR04]:
PROCESS(y0, 0) → IF1(y0, 0, true) → PROCESS(y0, 0) → IF1(y0, 0, true)
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0)) → PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1)))) → PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
(93) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
PROCESS(y0, 0) → IF1(y0, 0, true)
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(94) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(95) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(96) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF2(
store,
m,
false) →
PROCESS(
sndsplit(
m,
store),
m) at position [0] we obtained the following new rules [LPAR04]:
IF2(x0, 0, false) → PROCESS(x0, 0) → IF2(x0, 0, false) → PROCESS(x0, 0)
IF2(nil, s(x0), false) → PROCESS(nil, s(x0)) → IF2(nil, s(x0), false) → PROCESS(nil, s(x0))
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0)) → IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
(97) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF2(x0, 0, false) → PROCESS(x0, 0)
IF2(nil, s(x0), false) → PROCESS(nil, s(x0))
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(98) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(99) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(100) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF3(
store,
m,
false) →
PROCESS(
sndsplit(
m,
store),
m) at position [0] we obtained the following new rules [LPAR04]:
IF3(x0, 0, false) → PROCESS(x0, 0) → IF3(x0, 0, false) → PROCESS(x0, 0)
IF3(nil, s(x0), false) → PROCESS(nil, s(x0)) → IF3(nil, s(x0), false) → PROCESS(nil, s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0)) → IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
(101) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(x0, 0, false) → PROCESS(x0, 0)
IF3(nil, s(x0), false) → PROCESS(nil, s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(102) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(103) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(104) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
PROCESS(
cons(
x0,
x1),
y1) →
IF1(
cons(
x0,
x1),
y1,
leq(
y1,
s(
length(
x1)))) we obtained the following new rules [LPAR04]:
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1)))) → PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1))))
(105) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1))))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(106) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
PROCESS(
cons(
x0,
x1),
s(
z2)) →
IF1(
cons(
x0,
x1),
s(
z2),
leq(
s(
z2),
s(
length(
x1)))) at position [2] we obtained the following new rules [LPAR04]:
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1))) → PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
(107) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(108) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( PROCESS(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( sndsplit(x1, x2) ) = x2 |
POL( cons(x1, x2) ) = 2x2 + 1 |
POL( IF1(x1, ..., x3) ) = 2x1 + 2x2 + x3 + 1 |
POL( IF2(x1, ..., x3) ) = max{0, 2x1 + 2x2 + 2x3 - 2} |
POL( IF3(x1, ..., x3) ) = x1 + 2x2 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
(109) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
The TRS R consists of the following rules:
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
The set Q consists of the following terms:
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(110) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(111) TRUE