YES
0 QTRS
↳1 QTRSRRRProof (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 10 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 0 ms)
↳8 QTRS
↳9 Overlay + Local Confluence (⇔, 0 ms)
↳10 QTRS
↳11 DependencyPairsProof (⇔, 0 ms)
↳12 QDP
↳13 DependencyGraphProof (⇔, 0 ms)
↳14 TRUE
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 2
POL(app(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(nil) = 0
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(sum(x1)) = x1
plus(0, y) → y
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(s(x), y) → s(plus(x, y))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(app(x1, x2)) = 2 + 2·x1 + x2
POL(cons(x1, x2)) = 2 + x1 + x2
POL(nil) = 2
POL(plus(x1, x2)) = 2 + x1 + x2
POL(s(x1)) = 1 + x1
POL(sum(x1)) = x1
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(s(x), y) → s(plus(x, y))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(app(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = 2 + x1 + 2·x2
POL(nil) = 1
POL(plus(x1, x2)) = 2 + x1 + x2
POL(s(x1)) = 1 + x1
POL(sum(x1)) = x1
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(cons(x, nil)) → cons(x, nil)
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(s(x), y) → s(plus(x, y))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(app(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = x1 + x2
POL(nil) = 1
POL(plus(x1, x2)) = 2 + 2·x1 + x2
POL(s(x1)) = 1 + x1
POL(sum(x1)) = x1
plus(s(x), y) → s(plus(x, y))
sum(cons(x, nil)) → cons(x, nil)
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(cons(x, nil)) → cons(x, nil)
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(cons(x0, nil))
sum(app(x0, cons(x1, cons(x2, x3))))
SUM(app(l, cons(x, cons(y, k)))) → SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) → SUM(cons(x, cons(y, k)))
sum(cons(x, nil)) → cons(x, nil)
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
sum(cons(x0, nil))
sum(app(x0, cons(x1, cons(x2, x3))))