YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) app(nil(),y) -> y app(add(n,x),y) -> add(n,app(x,y)) reverse(nil()) -> nil() reverse(add(n,x)) -> app(reverse(x),add(n,nil())) shuffle(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) concat(leaf(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) less_leaves(x,leaf()) -> false() less_leaves(leaf(),cons(w,z)) -> true() less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: app#(add(n,x),y) -> app#(x,y) p5: reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())) p6: reverse#(add(n,x)) -> reverse#(x) p7: shuffle#(add(n,x)) -> shuffle#(reverse(x)) p8: shuffle#(add(n,x)) -> reverse#(x) p9: concat#(cons(u,v),y) -> concat#(v,y) p10: less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z)) p11: less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v) p12: less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p2} {p1} {p7} {p6} {p4} {p10} {p9} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = ((1,0),(1,0)) x1 s_A(x1) = x1 minus_A(x1,x2) = x1 + (0,1) |0|_A() = (1,1) quot_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (1,1) app_A(x1,x2) = ((1,1),(0,1)) x2 + (2,1) nil_A() = (1,1) add_A(x1,x2) = (1,1) reverse_A(x1) = ((1,1),(0,0)) x1 + (3,2) shuffle_A(x1) = x1 + (1,1) concat_A(x1,x2) = x1 + x2 + (1,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,2) less_leaves_A(x1,x2) = ((0,1),(0,1)) x1 + x2 + (1,0) false_A() = (0,0) true_A() = (0,0) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = (1,3) quot_A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (1,1) app_A(x1,x2) = ((1,1),(0,0)) x2 + (1,2) nil_A() = (1,2) add_A(x1,x2) = (2,3) reverse_A(x1) = x1 + (5,1) shuffle_A(x1) = (3,1) concat_A(x1,x2) = (2,1) leaf_A() = (1,1) cons_A(x1,x2) = (1,2) less_leaves_A(x1,x2) = (1,0) false_A() = (2,1) true_A() = (0,1) rand_A(x1) = x1 + (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) minus_A(x1,x2) = x1 |0|_A() = (1,1) quot_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(0,0)) x2 app_A(x1,x2) = x2 + (1,1) nil_A() = (0,2) add_A(x1,x2) = (4,3) reverse_A(x1) = ((0,1),(0,0)) x1 + (1,1) shuffle_A(x1) = (0,2) concat_A(x1,x2) = (2,1) leaf_A() = (1,1) cons_A(x1,x2) = (1,1) less_leaves_A(x1,x2) = (1,0) false_A() = (2,1) true_A() = (0,0) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = x1 + ((0,1),(0,0)) x2 s_A(x1) = x1 minus_A(x1,x2) = x1 + (0,1) |0|_A() = (1,1) quot_A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (1,1) app_A(x1,x2) = ((1,1),(0,1)) x2 + (2,1) nil_A() = (1,1) add_A(x1,x2) = (1,1) reverse_A(x1) = x1 + (4,2) shuffle_A(x1) = (2,1) concat_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,2) less_leaves_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 false_A() = (0,0) true_A() = (0,0) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 + (0,1) minus_A(x1,x2) = x1 + (1,0) |0|_A() = (2,1) quot_A(x1,x2) = ((0,1),(0,1)) x1 + (0,1) app_A(x1,x2) = ((0,1),(0,0)) x2 + (1,4) nil_A() = (2,4) add_A(x1,x2) = (2,5) reverse_A(x1) = ((1,0),(1,0)) x1 + (1,1) shuffle_A(x1) = (1,1) concat_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (2,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (1,2) less_leaves_A(x1,x2) = x1 false_A() = (1,1) true_A() = (2,1) rand_A(x1) = x1 + (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = ((0,1),(1,0)) x1 s_A(x1) = x1 + (1,1) minus_A(x1,x2) = ((0,1),(1,1)) x1 + (0,1) |0|_A() = (0,2) quot_A(x1,x2) = (1,1) app_A(x1,x2) = (2,4) nil_A() = (2,1) add_A(x1,x2) = (3,2) reverse_A(x1) = x1 + (1,1) shuffle_A(x1) = (1,1) concat_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (2,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) less_leaves_A(x1,x2) = x1 false_A() = (1,1) true_A() = (2,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: shuffle#(add(n,x)) -> shuffle#(reverse(x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: shuffle#_A(x1) = ((1,1),(0,0)) x1 add_A(x1,x2) = x2 + (1,4) reverse_A(x1) = x1 + (4,0) minus_A(x1,x2) = ((1,1),(0,1)) x1 + (1,1) |0|_A() = (0,1) s_A(x1) = ((0,0),(1,1)) x1 quot_A(x1,x2) = ((0,0),(1,1)) x2 + (0,1) app_A(x1,x2) = x1 + x2 + (2,0) nil_A() = (1,0) shuffle_A(x1) = x1 + (2,1) concat_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,2) less_leaves_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 false_A() = (0,0) true_A() = (0,0) rand_A(x1) = ((1,0),(1,1)) x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: shuffle#_A(x1) = ((0,1),(1,0)) x1 add_A(x1,x2) = (5,3) reverse_A(x1) = (2,4) minus_A(x1,x2) = (1,1) |0|_A() = (1,1) s_A(x1) = (1,1) quot_A(x1,x2) = (2,1) app_A(x1,x2) = x2 + (1,2) nil_A() = (3,5) shuffle_A(x1) = (4,1) concat_A(x1,x2) = (1,1) leaf_A() = (1,1) cons_A(x1,x2) = (2,2) less_leaves_A(x1,x2) = (1,0) false_A() = (0,1) true_A() = (2,1) rand_A(x1) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: shuffle#_A(x1) = (0,0) add_A(x1,x2) = (2,2) reverse_A(x1) = (1,1) minus_A(x1,x2) = (1,1) |0|_A() = (1,1) s_A(x1) = (3,2) quot_A(x1,x2) = (2,1) app_A(x1,x2) = (1,1) nil_A() = (2,2) shuffle_A(x1) = (1,1) concat_A(x1,x2) = (1,1) leaf_A() = (1,1) cons_A(x1,x2) = (2,2) less_leaves_A(x1,x2) = (1,0) false_A() = (0,0) true_A() = (2,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: reverse#(add(n,x)) -> reverse#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: reverse#_A(x1) = ((0,1),(0,1)) x1 add_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) minus_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,1) |0|_A() = (0,1) s_A(x1) = ((0,0),(1,1)) x1 quot_A(x1,x2) = ((1,0),(1,1)) x2 + (0,1) app_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (1,0) nil_A() = (1,0) reverse_A(x1) = ((1,1),(0,1)) x1 + (2,0) shuffle_A(x1) = x1 + (1,1) concat_A(x1,x2) = x1 + x2 + (1,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,2) less_leaves_A(x1,x2) = ((0,1),(0,1)) x1 + x2 + (1,0) false_A() = (0,0) true_A() = (0,0) rand_A(x1) = ((1,0),(1,1)) x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: reverse#_A(x1) = (0,0) add_A(x1,x2) = ((0,1),(1,1)) x1 + (4,2) minus_A(x1,x2) = (0,0) |0|_A() = (0,0) s_A(x1) = (0,1) quot_A(x1,x2) = x2 + (0,1) app_A(x1,x2) = ((0,1),(1,1)) x2 + (1,1) nil_A() = (6,2) reverse_A(x1) = x1 + (0,1) shuffle_A(x1) = (5,1) concat_A(x1,x2) = x1 + (1,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) less_leaves_A(x1,x2) = (1,0) false_A() = (2,1) true_A() = (0,1) rand_A(x1) = x1 + (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: reverse#_A(x1) = (0,0) add_A(x1,x2) = (2,7) minus_A(x1,x2) = (1,0) |0|_A() = (1,0) s_A(x1) = (1,1) quot_A(x1,x2) = x2 + (1,1) app_A(x1,x2) = (1,6) nil_A() = (4,5) reverse_A(x1) = ((0,1),(0,0)) x1 + (0,5) shuffle_A(x1) = (3,0) concat_A(x1,x2) = x1 + (2,1) leaf_A() = (1,1) cons_A(x1,x2) = ((0,0),(1,1)) x1 + (1,1) less_leaves_A(x1,x2) = (0,0) false_A() = (1,1) true_A() = (1,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(add(n,x),y) -> app#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(1,1)) x1 add_A(x1,x2) = x1 + x2 + (1,2) minus_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) s_A(x1) = ((0,1),(1,0)) x1 quot_A(x1,x2) = ((0,1),(0,1)) x2 + (2,2) app_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (1,0) nil_A() = (1,0) reverse_A(x1) = ((0,1),(0,1)) x1 + (4,0) shuffle_A(x1) = ((0,1),(0,1)) x1 + (2,1) concat_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(0,1)) x2 + (1,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 + (1,2) less_leaves_A(x1,x2) = ((0,1),(0,1)) x1 + (1,0) false_A() = (0,0) true_A() = (0,0) rand_A(x1) = ((1,1),(1,1)) x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(1,0)) x1 add_A(x1,x2) = ((1,0),(1,0)) x2 + (1,3) minus_A(x1,x2) = (0,0) |0|_A() = (1,1) s_A(x1) = (0,0) quot_A(x1,x2) = (0,0) app_A(x1,x2) = x2 + (0,2) nil_A() = (1,2) reverse_A(x1) = (3,1) shuffle_A(x1) = (2,1) concat_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) leaf_A() = (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) less_leaves_A(x1,x2) = (0,0) false_A() = (1,1) true_A() = (1,1) rand_A(x1) = ((1,1),(0,1)) x1 + (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 add_A(x1,x2) = ((0,1),(0,0)) x2 + (1,3) minus_A(x1,x2) = (1,1) |0|_A() = (3,2) s_A(x1) = (1,1) quot_A(x1,x2) = (2,1) app_A(x1,x2) = ((0,1),(0,0)) x2 + (1,2) nil_A() = (1,1) reverse_A(x1) = (2,1) shuffle_A(x1) = (2,2) concat_A(x1,x2) = (1,1) leaf_A() = (1,1) cons_A(x1,x2) = (2,2) less_leaves_A(x1,x2) = (1,0) false_A() = (0,1) true_A() = (2,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: less_leaves#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,1) concat_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) minus_A(x1,x2) = x1 + x2 + (1,0) |0|_A() = (1,1) s_A(x1) = x1 quot_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(1,0)) x2 + (1,1) app_A(x1,x2) = ((1,1),(0,1)) x2 + (2,1) nil_A() = (1,1) add_A(x1,x2) = (1,1) reverse_A(x1) = x1 + (4,2) shuffle_A(x1) = (2,1) leaf_A() = (1,1) less_leaves_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 false_A() = (0,0) true_A() = (0,0) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: less_leaves#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 cons_A(x1,x2) = x1 + x2 + (3,1) concat_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(1,1)) x2 + (1,2) minus_A(x1,x2) = (1,1) |0|_A() = (3,2) s_A(x1) = (1,0) quot_A(x1,x2) = (2,1) app_A(x1,x2) = ((1,1),(0,0)) x2 + (1,4) nil_A() = (0,2) add_A(x1,x2) = (2,5) reverse_A(x1) = ((1,0),(1,0)) x1 + (7,1) shuffle_A(x1) = (1,1) leaf_A() = (1,1) less_leaves_A(x1,x2) = x1 + (1,0) false_A() = (0,1) true_A() = (2,2) rand_A(x1) = x1 + (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: less_leaves#_A(x1,x2) = (0,0) cons_A(x1,x2) = (2,2) concat_A(x1,x2) = (1,1) minus_A(x1,x2) = (1,1) |0|_A() = (3,2) s_A(x1) = (1,1) quot_A(x1,x2) = (2,1) app_A(x1,x2) = ((0,1),(0,0)) x2 + (1,0) nil_A() = (2,0) add_A(x1,x2) = (2,2) reverse_A(x1) = (4,1) shuffle_A(x1) = (1,1) leaf_A() = (1,1) less_leaves_A(x1,x2) = (0,0) false_A() = (1,1) true_A() = (1,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: concat#(cons(u,v),y) -> concat#(v,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: concat#_A(x1,x2) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,2) minus_A(x1,x2) = x1 + ((0,1),(0,0)) x2 + (1,0) |0|_A() = (1,1) s_A(x1) = x1 quot_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,0)) x2 + (1,1) app_A(x1,x2) = ((1,1),(0,1)) x2 + (2,1) nil_A() = (1,1) add_A(x1,x2) = (1,1) reverse_A(x1) = ((0,1),(0,0)) x1 + (4,2) shuffle_A(x1) = x1 + (1,1) concat_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (2,1) leaf_A() = (1,1) less_leaves_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 false_A() = (0,0) true_A() = (0,0) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: concat#_A(x1,x2) = ((1,0),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (1,1) minus_A(x1,x2) = (0,0) |0|_A() = (4,2) s_A(x1) = ((0,1),(0,0)) x1 + (1,0) quot_A(x1,x2) = (3,1) app_A(x1,x2) = x2 + (1,2) nil_A() = (1,2) add_A(x1,x2) = (2,3) reverse_A(x1) = (4,1) shuffle_A(x1) = x1 + (1,0) concat_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,2) leaf_A() = (1,1) less_leaves_A(x1,x2) = (1,0) false_A() = (0,1) true_A() = (0,1) rand_A(x1) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: concat#_A(x1,x2) = ((1,1),(1,0)) x1 cons_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,0),(1,0)) x2 + (2,1) minus_A(x1,x2) = (0,1) |0|_A() = (1,2) s_A(x1) = (1,1) quot_A(x1,x2) = (2,1) app_A(x1,x2) = (4,4) nil_A() = (2,3) add_A(x1,x2) = (5,6) reverse_A(x1) = (3,3) shuffle_A(x1) = ((0,0),(1,0)) x1 + (1,0) concat_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,1),(0,0)) x2 + (1,1) leaf_A() = (1,1) less_leaves_A(x1,x2) = (1,0) false_A() = (2,1) true_A() = (0,0) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.