YES We show the termination of the relative TRS R/S: R: pred(s(x)) -> x minus(x,|0|()) -> x minus(x,s(y)) -> pred(minus(x,y)) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> pred#(minus(x,y)) p2: minus#(x,s(y)) -> minus#(x,y) p3: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p4: quot#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: pred(s(x)) -> x r2: minus(x,|0|()) -> x r3: minus(x,s(y)) -> pred(minus(x,y)) r4: quot(|0|(),s(y)) -> |0|() r5: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r6: rand(x) -> x r7: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p3} {p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: pred(s(x)) -> x r2: minus(x,|0|()) -> x r3: minus(x,s(y)) -> pred(minus(x,y)) r4: quot(|0|(),s(y)) -> |0|() r5: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r6: rand(x) -> x r7: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = ((1,1),(0,0)) x1 minus_A(x1,x2) = ((1,0),(1,1)) x1 + (0,1) pred_A(x1) = ((1,0),(1,0)) x1 |0|_A() = (1,0) quot_A(x1,x2) = x1 + (1,0) rand_A(x1) = ((1,1),(0,1)) x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = x1 + (1,1) minus_A(x1,x2) = x1 pred_A(x1) = x1 |0|_A() = (1,1) quot_A(x1,x2) = x1 + (1,1) rand_A(x1) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = ((1,1),(0,0)) x1 s_A(x1) = ((0,1),(0,0)) x1 + (2,1) minus_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) pred_A(x1) = x1 |0|_A() = (1,2) quot_A(x1,x2) = x1 + (2,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> minus#(x,y) and R consists of: r1: pred(s(x)) -> x r2: minus(x,|0|()) -> x r3: minus(x,s(y)) -> pred(minus(x,y)) r4: quot(|0|(),s(y)) -> |0|() r5: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r6: rand(x) -> x r7: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = ((1,0),(1,1)) x2 s_A(x1) = x1 pred_A(x1) = x1 minus_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (0,1) |0|_A() = (1,1) quot_A(x1,x2) = x1 + ((0,1),(1,0)) x2 + (1,1) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = ((1,1),(0,0)) x2 s_A(x1) = ((1,0),(1,1)) x1 + (0,1) pred_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = (1,1) quot_A(x1,x2) = ((1,0),(1,1)) x1 + (0,1) rand_A(x1) = x1 + (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) pred_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = (0,1) quot_A(x1,x2) = ((0,1),(1,0)) x1 rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.