YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) double(|0|()) -> |0|() double(s(x)) -> s(s(double(x))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) plus(s(x),y) -> plus(x,s(y)) plus(s(x),y) -> s(plus(minus(x,y),double(y))) plus(s(plus(x,y)),z) -> s(plus(plus(x,y),z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: double#(s(x)) -> double#(x) p3: plus#(s(x),y) -> plus#(x,y) p4: plus#(s(x),y) -> plus#(x,s(y)) p5: plus#(s(x),y) -> plus#(minus(x,y),double(y)) p6: plus#(s(x),y) -> minus#(x,y) p7: plus#(s(x),y) -> double#(y) p8: plus#(s(plus(x,y)),z) -> plus#(plus(x,y),z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(s(x),y) -> plus(x,s(y)) r8: plus(s(x),y) -> s(plus(minus(x,y),double(y))) r9: plus(s(plus(x,y)),z) -> s(plus(plus(x,y),z)) r10: rand(x) -> x r11: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p3, p4, p5, p8} {p1} {p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: plus#(s(plus(x,y)),z) -> plus#(plus(x,y),z) p2: plus#(s(x),y) -> plus#(minus(x,y),double(y)) p3: plus#(s(x),y) -> plus#(x,s(y)) p4: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(s(x),y) -> plus(x,s(y)) r8: plus(s(x),y) -> s(plus(minus(x,y),double(y))) r9: plus(s(plus(x,y)),z) -> s(plus(plus(x,y),z)) r10: rand(x) -> x r11: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = x1 + ((0,0),(1,1)) x2 s_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + (1,1) minus_A(x1,x2) = ((1,0),(1,1)) x1 + (0,1) double_A(x1) = x1 |0|_A() = (0,1) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((1,1),(0,1)) x1 s_A(x1) = x1 + (3,3) plus_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) minus_A(x1,x2) = x1 + (1,1) double_A(x1) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) rand_A(x1) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((1,1),(1,0)) x1 s_A(x1) = ((0,1),(0,0)) x1 + (1,2) plus_A(x1,x2) = (1,1) minus_A(x1,x2) = ((0,1),(0,0)) x1 + (1,1) double_A(x1) = ((0,0),(1,1)) x1 + (4,1) |0|_A() = (1,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(s(x),y) -> plus(x,s(y)) r8: plus(s(x),y) -> s(plus(minus(x,y),double(y))) r9: plus(s(plus(x,y)),z) -> s(plus(plus(x,y),z)) r10: rand(x) -> x r11: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 minus_A(x1,x2) = x1 + (0,1) |0|_A() = (0,0) double_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + (1,1) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = ((1,1),(0,1)) x1 + x2 s_A(x1) = x1 + (2,2) minus_A(x1,x2) = x1 + (1,0) |0|_A() = (1,1) double_A(x1) = ((1,1),(1,1)) x1 + (1,1) plus_A(x1,x2) = ((1,1),(0,1)) x1 + (1,1) rand_A(x1) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + (3,3) minus_A(x1,x2) = (1,1) |0|_A() = (1,1) double_A(x1) = ((1,1),(1,1)) x1 + (0,1) plus_A(x1,x2) = ((1,1),(0,1)) x1 + (0,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: double#(s(x)) -> double#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: double(|0|()) -> |0|() r4: double(s(x)) -> s(s(double(x))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: plus(s(x),y) -> plus(x,s(y)) r8: plus(s(x),y) -> s(plus(minus(x,y),double(y))) r9: plus(s(plus(x,y)),z) -> s(plus(plus(x,y),z)) r10: rand(x) -> x r11: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: double#_A(x1) = x1 s_A(x1) = x1 minus_A(x1,x2) = ((1,0),(1,1)) x1 + (0,1) |0|_A() = (1,0) double_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + (1,1) rand_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: double#_A(x1) = ((1,0),(1,0)) x1 s_A(x1) = x1 + (1,1) minus_A(x1,x2) = ((1,0),(1,1)) x1 + (0,1) |0|_A() = (1,1) double_A(x1) = ((1,1),(1,1)) x1 + (1,1) plus_A(x1,x2) = ((1,0),(1,0)) x1 + (1,1) rand_A(x1) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: double#_A(x1) = (0,0) s_A(x1) = (1,1) minus_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) double_A(x1) = x1 + (2,1) plus_A(x1,x2) = (2,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.