YES

We show the termination of the relative TRS R/S:

  R:
  rev(nil()) -> nil()
  rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l))
  rev1(|0|(),nil()) -> |0|()
  rev1(s(x),nil()) -> s(x)
  rev1(x,cons(y,l)) -> rev1(y,l)
  rev2(x,nil()) -> nil()
  rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l)))

  S:
  rand(x) -> x
  rand(x) -> rand(s(x))

-- SCC decomposition.

Consider the non-minimal dependency pair problem (P, R), where P consists of

p1: rev#(cons(x,l)) -> rev1#(x,l)
p2: rev#(cons(x,l)) -> rev2#(x,l)
p3: rev1#(x,cons(y,l)) -> rev1#(y,l)
p4: rev2#(x,cons(y,l)) -> rev#(cons(x,rev2(y,l)))
p5: rev2#(x,cons(y,l)) -> rev2#(y,l)

and R consists of:

r1: rev(nil()) -> nil()
r2: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l))
r3: rev1(|0|(),nil()) -> |0|()
r4: rev1(s(x),nil()) -> s(x)
r5: rev1(x,cons(y,l)) -> rev1(y,l)
r6: rev2(x,nil()) -> nil()
r7: rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l)))
r8: rand(x) -> x
r9: rand(x) -> rand(s(x))

The estimated dependency graph contains the following SCCs:

  {p2, p4, p5}
  {p3}


-- Reduction pair.

Consider the non-minimal dependency pair problem (P, R), where P consists of

p1: rev2#(x,cons(y,l)) -> rev#(cons(x,rev2(y,l)))
p2: rev#(cons(x,l)) -> rev2#(x,l)
p3: rev2#(x,cons(y,l)) -> rev2#(y,l)

and R consists of:

r1: rev(nil()) -> nil()
r2: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l))
r3: rev1(|0|(),nil()) -> |0|()
r4: rev1(s(x),nil()) -> s(x)
r5: rev1(x,cons(y,l)) -> rev1(y,l)
r6: rev2(x,nil()) -> nil()
r7: rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l)))
r8: rand(x) -> x
r9: rand(x) -> rand(s(x))

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        rev2#_A(x1,x2) = x1 + ((0,1),(0,0)) x2 + (2,0)
        cons_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (1,3)
        rev#_A(x1) = ((0,1),(0,0)) x1
        rev2_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,1),(0,1)) x2 + (3,0)
        rev_A(x1) = ((0,1),(0,1)) x1 + (2,0)
        nil_A() = (1,0)
        rev1_A(x1,x2) = (0,1)
        |0|_A() = (0,1)
        s_A(x1) = (0,0)
        rand_A(x1) = x1 + (1,0)
    
    2. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        rev2#_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1)
        cons_A(x1,x2) = ((0,1),(1,1)) x2 + (1,1)
        rev#_A(x1) = (0,0)
        rev2_A(x1,x2) = (1,1)
        rev_A(x1) = (3,2)
        nil_A() = (2,0)
        rev1_A(x1,x2) = (2,1)
        |0|_A() = (1,1)
        s_A(x1) = (1,1)
        rand_A(x1) = (0,0)
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the non-minimal dependency pair problem (P, R), where P consists of

p1: rev1#(x,cons(y,l)) -> rev1#(y,l)

and R consists of:

r1: rev(nil()) -> nil()
r2: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l))
r3: rev1(|0|(),nil()) -> |0|()
r4: rev1(s(x),nil()) -> s(x)
r5: rev1(x,cons(y,l)) -> rev1(y,l)
r6: rev2(x,nil()) -> nil()
r7: rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l)))
r8: rand(x) -> x
r9: rand(x) -> rand(s(x))

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        rev1#_A(x1,x2) = ((0,1),(0,0)) x2
        cons_A(x1,x2) = ((0,1),(0,1)) x2 + (1,3)
        rev_A(x1) = ((1,0),(1,0)) x1 + (1,2)
        nil_A() = (1,2)
        rev1_A(x1,x2) = (2,1)
        rev2_A(x1,x2) = ((0,1),(0,1)) x2
        |0|_A() = (1,1)
        s_A(x1) = (0,0)
        rand_A(x1) = x1 + (1,0)
    
    2. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        rev1#_A(x1,x2) = (0,0)
        cons_A(x1,x2) = (1,3)
        rev_A(x1) = (2,2)
        nil_A() = (3,3)
        rev1_A(x1,x2) = (2,1)
        rev2_A(x1,x2) = (1,1)
        |0|_A() = (1,2)
        s_A(x1) = (3,2)
        rand_A(x1) = (0,0)
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.