YES We show the termination of the relative TRS R/S: R: f(|0|()) -> s(|0|()) f(s(|0|())) -> s(|0|()) f(s(s(x))) -> f(f(s(x))) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> f#(f(s(x))) p2: f#(s(s(x))) -> f#(s(x)) and R consists of: r1: f(|0|()) -> s(|0|()) r2: f(s(|0|())) -> s(|0|()) r3: f(s(s(x))) -> f(f(s(x))) r4: rand(x) -> x r5: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(s(s(x))) -> f#(f(s(x))) p2: f#(s(s(x))) -> f#(s(x)) and R consists of: r1: f(|0|()) -> s(|0|()) r2: f(s(|0|())) -> s(|0|()) r3: f(s(s(x))) -> f(f(s(x))) r4: rand(x) -> x r5: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 s_A(x1) = ((1,1),(0,0)) x1 f_A(x1) = x1 + (0,1) |0|_A() = (1,0) rand_A(x1) = ((1,1),(0,1)) x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = x1 s_A(x1) = ((0,1),(0,1)) x1 + (1,3) f_A(x1) = (3,4) |0|_A() = (1,1) rand_A(x1) = (0,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.