YES We show the termination of the relative TRS R/S: R: g(x,y) -> x g(x,y) -> y f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > f# > g > rand > |1| > |0| > f argument filter: pi(f#) = [3] pi(|0|) = [] pi(|1|) = [] pi(s) = 1 pi(g) = [1, 2] pi(f) = 3 pi(rand) = 1 2. lexicographic path order with precedence: precedence: f# > |0| > g > rand > s > |1| > f argument filter: pi(f#) = [3] pi(|0|) = [] pi(|1|) = [] pi(s) = 1 pi(g) = 1 pi(f) = [3] pi(rand) = [1] 3. lexicographic path order with precedence: precedence: rand > g > |1| > |0| > f > s > f# argument filter: pi(f#) = [3] pi(|0|) = [] pi(|1|) = [] pi(s) = [1] pi(g) = 1 pi(f) = [3] pi(rand) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs)