YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: plus#(s(x),y) -> plus#(x,y) p5: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) p6: minus#(minus(x,y),z) -> plus#(y,z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p2} {p1, p5} {p4} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > plus > minus > quot > s > |0| > quot# argument filter: pi(quot#) = [1, 2] pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(quot) = [1, 2] pi(plus) = [1, 2] pi(rand) = [1] 2. lexicographic path order with precedence: precedence: rand > plus > |0| > quot > s > minus > quot# argument filter: pi(quot#) = [1, 2] pi(s) = [1] pi(minus) = [1] pi(|0|) = [] pi(quot) = [1] pi(plus) = [1, 2] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > rand > |0| > minus > quot > plus > minus# argument filter: pi(minus#) = [1] pi(s) = 1 pi(minus) = 1 pi(plus) = [2] pi(|0|) = [] pi(quot) = 1 pi(rand) = 1 2. lexicographic path order with precedence: precedence: quot > |0| > plus > minus# > s > rand > minus argument filter: pi(minus#) = 1 pi(s) = 1 pi(minus) = [1] pi(plus) = [2] pi(|0|) = [] pi(quot) = [] pi(rand) = 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > |0| > quot > s > plus > minus > minus# argument filter: pi(minus#) = [1] pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(quot) = 1 pi(plus) = [1, 2] pi(rand) = [1] 2. lexicographic path order with precedence: precedence: plus > |0| > quot > s > rand > minus > minus# argument filter: pi(minus#) = 1 pi(s) = [1] pi(minus) = 1 pi(|0|) = [] pi(quot) = [1] pi(plus) = 1 pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > plus > |0| > minus > s > quot > plus# argument filter: pi(plus#) = [1, 2] pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(quot) = 1 pi(plus) = [1, 2] pi(rand) = [1] 2. lexicographic path order with precedence: precedence: quot > |0| > plus > minus > rand > s > plus# argument filter: pi(plus#) = [1] pi(s) = [1] pi(minus) = 1 pi(|0|) = [] pi(quot) = 1 pi(plus) = 1 pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.