YES We show the termination of the relative TRS R/S: R: f(g(f(x))) -> f(g(g(g(f(x))))) S: g(x) -> g(g(x)) -- SCC decomposition. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: f#(g(f(x))) -> f#(g(g(g(f(x))))) and R consists of: r1: f(g(f(x))) -> f(g(g(g(f(x))))) r2: g(x) -> g(g(x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: f#(g(f(x))) -> f#(g(g(g(f(x))))) and R consists of: r1: f(g(f(x))) -> f(g(g(g(f(x))))) r2: g(x) -> g(g(x)) The set of usable rules consists of r1, r2 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = x1 g_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,0,1,1) f_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + (0,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.