YES We show the termination of the relative TRS R/S: R: half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(x))) -> s(half(x)) lastbit(|0|()) -> |0|() lastbit(s(|0|())) -> s(|0|()) lastbit(s(s(x))) -> lastbit(x) conv(|0|()) -> cons(nil(),|0|()) conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) p2: lastbit#(s(s(x))) -> lastbit#(x) p3: conv#(s(x)) -> conv#(half(s(x))) p4: conv#(s(x)) -> half#(s(x)) p5: conv#(s(x)) -> lastbit#(s(x)) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) r9: rand(x) -> x r10: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p3} {p1} {p2} -- Reduction pair. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: conv#(s(x)) -> conv#(half(s(x))) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) r9: rand(x) -> x r10: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: conv#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,1)) x1 s_A(x1) = x1 + (0,1,3,2) half_A(x1) = x1 + (0,0,2,1) |0|_A() = (3,1,1,2) lastbit_A(x1) = x1 + (1,3,4,3) conv_A(x1) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (1,2,1,1) cons_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x2 nil_A() = (1,0,1,1) rand_A(x1) = x1 + (1,0,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) r9: rand(x) -> x r10: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: half#_A(x1) = x1 s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + (0,0,4,0) half_A(x1) = x1 + (1,1,1,1) |0|_A() = (1,2,1,1) lastbit_A(x1) = (2,1,2,6) conv_A(x1) = x1 + (3,2,2,1) cons_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + x2 + (0,4,0,2) nil_A() = (1,1,0,1) rand_A(x1) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (1,0,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: lastbit#(s(s(x))) -> lastbit#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) r9: rand(x) -> x r10: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: lastbit#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,1,1,1) half_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 + (1,1,1,1) |0|_A() = (0,2,8,9) lastbit_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (1,1,4,2) conv_A(x1) = x1 + (2,0,1,1) cons_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + (0,0,2,2) nil_A() = (1,1,1,1) rand_A(x1) = x1 + (1,0,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.