YES We show the termination of the relative TRS R/S: R: g(s(x)) -> f(x) f(|0|()) -> s(|0|()) f(s(x)) -> s(s(g(x))) g(|0|()) -> |0|() S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: g#(s(x)) -> f#(x) p2: f#(s(x)) -> g#(x) and R consists of: r1: g(s(x)) -> f(x) r2: f(|0|()) -> s(|0|()) r3: f(s(x)) -> s(s(g(x))) r4: g(|0|()) -> |0|() r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimaldependency pair problem (P, R), where P consists of p1: g#(s(x)) -> f#(x) p2: f#(s(x)) -> g#(x) and R consists of: r1: g(s(x)) -> f(x) r2: f(|0|()) -> s(|0|()) r3: f(s(x)) -> s(s(g(x))) r4: g(|0|()) -> |0|() r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 + (0,0,2,0) s_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,0,0,1)) x1 + (0,2,1,1) f#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 + (0,1,0,3) g_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,0,1)) x1 + (0,0,1,0) f_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,0,1)) x1 + (0,2,2,0) |0|_A() = (1,0,1,1) rand_A(x1) = x1 + (1,1,1,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.