YES We show the termination of the relative TRS R/S: R: app(nil(),k) -> k app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) sum(cons(x,nil())) -> cons(x,nil()) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) pred(cons(s(x),nil())) -> cons(x,nil()) S: cons(x,cons(y,l)) -> cons(y,cons(x,l)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) p2: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p3: sum#(cons(x,cons(y,l))) -> plus#(x,y) p4: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p5: sum#(app(l,cons(x,cons(y,k)))) -> app#(l,sum(cons(x,cons(y,k)))) p6: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) p7: plus#(s(x),y) -> plus#(x,y) p8: sum#(plus(cons(|0|(),x),cons(y,l))) -> pred#(sum(cons(s(x),cons(y,l)))) p9: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The estimated dependency graph contains the following SCCs: {p2, p4, p6, p9} {p1} {p7} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) p2: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) p3: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p4: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: sum#_A(x1) = ((1,0,0),(0,1,0),(1,1,0)) x1 plus_A(x1,x2) = ((1,0,0),(1,0,0),(1,0,0)) x1 + ((1,0,0),(1,1,0),(1,0,0)) x2 + (3,1,1) cons_A(x1,x2) = x1 + x2 + (4,11,1) |0|_A() = (0,0,1) s_A(x1) = x1 + (2,1,1) app_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,0)) x1 + ((1,0,0),(1,0,0),(0,1,0)) x2 + (14,1,0) sum_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (0,13,0) nil_A() = (0,1,4) pred_A(x1) = ((1,0,0),(1,0,0),(0,1,0)) x1 + (0,7,0) The next rules are strictly ordered: p1, p2, p4 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: sum#_A(x1) = ((1,0,0),(0,0,0),(0,1,0)) x1 app_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,1)) x1 + ((1,0,0),(1,0,0),(0,0,0)) x2 + (1,1,1) cons_A(x1,x2) = ((0,0,0),(1,0,0),(1,0,0)) x1 + ((1,0,0),(0,1,0),(1,0,1)) x2 + (5,1,22) sum_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 + (9,2,22) nil_A() = (1,6,0) plus_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,2,2) |0|_A() = (0,1,1) s_A(x1) = x1 + (0,1,1) pred_A(x1) = ((0,0,0),(1,0,0),(1,1,0)) x1 + (8,0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,0)) x1 + ((1,0,0),(0,0,0),(0,1,0)) x2 cons_A(x1,x2) = x2 + (2,3,6) app_A(x1,x2) = x1 + x2 + (1,0,7) nil_A() = (0,1,1) sum_A(x1) = ((0,0,0),(1,0,0),(0,1,0)) x1 + (3,0,0) plus_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,1)) x2 + (5,1,0) |0|_A() = (1,1,0) s_A(x1) = x1 pred_A(x1) = ((1,0,0),(1,0,0),(0,1,0)) x1 + (0,3,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) r11: cons(x,cons(y,l)) -> cons(y,cons(x,l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: plus#_A(x1,x2) = x1 s_A(x1) = ((1,0,0),(0,1,0),(1,0,0)) x1 + (7,0,0) app_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,0)) x1 + ((1,0,0),(1,0,0),(1,1,0)) x2 + (0,1,0) nil_A() = (1,1,0) cons_A(x1,x2) = ((0,0,0),(1,0,0),(1,0,0)) x1 + ((1,0,0),(0,1,0),(0,1,0)) x2 + (3,0,1) sum_A(x1) = ((0,0,0),(1,0,0),(0,1,0)) x1 + (5,0,2) plus_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,0)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (6,1,0) |0|_A() = (1,1,0) pred_A(x1) = ((1,0,0),(1,1,0),(0,0,1)) x1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.