YES We show the termination of the relative TRS R/S: R: t(f(x),g(y),f(z)) -> t(z,g(x),g(y)) t(g(x),g(y),f(z)) -> t(f(y),f(z),x) S: f(g(x)) -> g(f(x)) g(f(x)) -> f(g(x)) f(f(x)) -> g(g(x)) g(g(x)) -> f(f(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: t#(f(x),g(y),f(z)) -> t#(z,g(x),g(y)) p2: t#(g(x),g(y),f(z)) -> t#(f(y),f(z),x) and R consists of: r1: t(f(x),g(y),f(z)) -> t(z,g(x),g(y)) r2: t(g(x),g(y),f(z)) -> t(f(y),f(z),x) r3: f(g(x)) -> g(f(x)) r4: g(f(x)) -> f(g(x)) r5: f(f(x)) -> g(g(x)) r6: g(g(x)) -> f(f(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: t#(f(x),g(y),f(z)) -> t#(z,g(x),g(y)) p2: t#(g(x),g(y),f(z)) -> t#(f(y),f(z),x) and R consists of: r1: t(f(x),g(y),f(z)) -> t(z,g(x),g(y)) r2: t(g(x),g(y),f(z)) -> t(f(y),f(z),x) r3: f(g(x)) -> g(f(x)) r4: g(f(x)) -> f(g(x)) r5: f(f(x)) -> g(g(x)) r6: g(g(x)) -> f(f(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: t#_A(x1,x2,x3) = x1 + x2 + x3 f_A(x1) = x1 + 1 g_A(x1) = x1 + 1 t_A(x1,x2,x3) = 0 2. lexicographic path order with precedence: precedence: g > t > f > t# argument filter: pi(t#) = [1, 2, 3] pi(f) = 1 pi(g) = 1 pi(t) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.