YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) app(nil(),y) -> y app(add(n,x),y) -> add(n,app(x,y)) reverse(nil()) -> nil() reverse(add(n,x)) -> app(reverse(x),add(n,nil())) shuffle(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) concat(leaf(),y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) less_leaves(x,leaf()) -> false() less_leaves(leaf(),cons(w,z)) -> true() less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: app#(add(n,x),y) -> app#(x,y) p5: reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())) p6: reverse#(add(n,x)) -> reverse#(x) p7: shuffle#(add(n,x)) -> shuffle#(reverse(x)) p8: shuffle#(add(n,x)) -> reverse#(x) p9: concat#(cons(u,v),y) -> concat#(v,y) p10: less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z)) p11: less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v) p12: less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p2} {p1} {p7} {p6} {p4} {p10} {p9} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 app_A(x1,x2) = x2 nil_A() = 0 add_A(x1,x2) = 0 reverse_A(x1) = 0 shuffle_A(x1) = 0 concat_A(x1,x2) = x1 + x2 + 1 leaf_A() = 1 cons_A(x1,x2) = x1 + x2 + 2 less_leaves_A(x1,x2) = x1 + x2 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: quot# > rand > true > false > concat > less_leaves > cons > leaf > reverse > shuffle > nil > app > add > |0| > quot > minus > s argument filter: pi(quot#) = 1 pi(s) = [1] pi(minus) = 1 pi(|0|) = [] pi(quot) = 1 pi(app) = [2] pi(nil) = [] pi(add) = [] pi(reverse) = [] pi(shuffle) = [] pi(concat) = 2 pi(leaf) = [] pi(cons) = 2 pi(less_leaves) = 2 pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 app_A(x1,x2) = x2 nil_A() = 0 add_A(x1,x2) = 0 reverse_A(x1) = x1 shuffle_A(x1) = 0 concat_A(x1,x2) = x1 + x2 + 1 leaf_A() = 1 cons_A(x1,x2) = x1 + x2 + 2 less_leaves_A(x1,x2) = x1 + 1 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: s > rand > true > false > concat > less_leaves > cons > leaf > reverse > shuffle > nil > app > add > |0| > quot > minus# > minus argument filter: pi(minus#) = 1 pi(s) = [1] pi(minus) = 1 pi(|0|) = [] pi(quot) = 1 pi(app) = [2] pi(nil) = [] pi(add) = [] pi(reverse) = [1] pi(shuffle) = [] pi(concat) = 2 pi(leaf) = [] pi(cons) = 2 pi(less_leaves) = [1] pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: shuffle#(add(n,x)) -> shuffle#(reverse(x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: shuffle#_A(x1) = x1 add_A(x1,x2) = x2 + 1 reverse_A(x1) = x1 minus_A(x1,x2) = x1 + 1 |0|_A() = 1 s_A(x1) = x1 quot_A(x1,x2) = x2 + 2 app_A(x1,x2) = x1 + x2 nil_A() = 0 shuffle_A(x1) = x1 + 1 concat_A(x1,x2) = x1 + x2 + 1 leaf_A() = 1 cons_A(x1,x2) = x1 + x2 + 2 less_leaves_A(x1,x2) = x1 + x2 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: nil > rand > true > false > concat > less_leaves > cons > leaf > reverse > shuffle > app > |0| > quot > minus > s > add > shuffle# argument filter: pi(shuffle#) = [] pi(add) = [] pi(reverse) = [1] pi(minus) = [] pi(|0|) = [] pi(s) = [] pi(quot) = [] pi(app) = [2] pi(nil) = [] pi(shuffle) = 1 pi(concat) = 1 pi(leaf) = [] pi(cons) = 1 pi(less_leaves) = 2 pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: reverse#(add(n,x)) -> reverse#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: reverse#_A(x1) = x1 add_A(x1,x2) = x1 + x2 + 1 minus_A(x1,x2) = x1 + 1 |0|_A() = 1 s_A(x1) = x1 quot_A(x1,x2) = x2 + 2 app_A(x1,x2) = x1 + x2 nil_A() = 0 reverse_A(x1) = x1 shuffle_A(x1) = x1 + 1 concat_A(x1,x2) = x1 + x2 + 1 leaf_A() = 1 cons_A(x1,x2) = x1 + x2 + 2 less_leaves_A(x1,x2) = x1 + x2 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: s > rand > true > false > concat > less_leaves > leaf > reverse > app > add > nil > cons > shuffle > |0| > quot > minus > reverse# argument filter: pi(reverse#) = [] pi(add) = [] pi(minus) = [] pi(|0|) = [] pi(s) = [] pi(quot) = [2] pi(app) = [2] pi(nil) = [] pi(reverse) = [1] pi(shuffle) = 1 pi(concat) = 2 pi(leaf) = [] pi(cons) = 2 pi(less_leaves) = 2 pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: app#(add(n,x),y) -> app#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 add_A(x1,x2) = x1 + x2 + 1 minus_A(x1,x2) = x1 + 1 |0|_A() = 0 s_A(x1) = x1 quot_A(x1,x2) = x2 + 1 app_A(x1,x2) = x1 + x2 nil_A() = 0 reverse_A(x1) = x1 shuffle_A(x1) = x1 + 1 concat_A(x1,x2) = x1 + x2 + 1 leaf_A() = 1 cons_A(x1,x2) = x1 + x2 + 2 less_leaves_A(x1,x2) = x1 + x2 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: rand > quot > s > less_leaves > true > false > concat > cons > leaf > nil > reverse > shuffle > app > |0| > minus > app# > add argument filter: pi(app#) = [1, 2] pi(add) = [] pi(minus) = [] pi(|0|) = [] pi(s) = [] pi(quot) = 2 pi(app) = [2] pi(nil) = [] pi(reverse) = [1] pi(shuffle) = [] pi(concat) = [] pi(leaf) = [] pi(cons) = [] pi(less_leaves) = [1, 2] pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: less_leaves#_A(x1,x2) = x1 + x2 cons_A(x1,x2) = x1 + x2 + 2 concat_A(x1,x2) = x1 + x2 + 1 minus_A(x1,x2) = x1 + 1 |0|_A() = 1 s_A(x1) = x1 quot_A(x1,x2) = x2 + 2 app_A(x1,x2) = x2 nil_A() = 0 add_A(x1,x2) = x2 reverse_A(x1) = x1 shuffle_A(x1) = x1 + 1 leaf_A() = 1 less_leaves_A(x1,x2) = x1 + x2 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: true > leaf > false > less_leaves > reverse > app > rand > nil > add > shuffle > quot > s > |0| > minus > concat > less_leaves# > cons argument filter: pi(less_leaves#) = [1, 2] pi(cons) = [1] pi(concat) = [1, 2] pi(minus) = [] pi(|0|) = [] pi(s) = [] pi(quot) = [2] pi(app) = [2] pi(nil) = [] pi(add) = 2 pi(reverse) = [1] pi(shuffle) = [] pi(leaf) = [] pi(less_leaves) = 2 pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: concat#(cons(u,v),y) -> concat#(v,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: app(nil(),y) -> y r6: app(add(n,x),y) -> add(n,app(x,y)) r7: reverse(nil()) -> nil() r8: reverse(add(n,x)) -> app(reverse(x),add(n,nil())) r9: shuffle(nil()) -> nil() r10: shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) r11: concat(leaf(),y) -> y r12: concat(cons(u,v),y) -> cons(u,concat(v,y)) r13: less_leaves(x,leaf()) -> false() r14: less_leaves(leaf(),cons(w,z)) -> true() r15: less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) r16: rand(x) -> x r17: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: concat#_A(x1,x2) = x1 + x2 cons_A(x1,x2) = x1 + x2 + 2 minus_A(x1,x2) = x1 + x2 + 1 |0|_A() = 1 s_A(x1) = x1 quot_A(x1,x2) = x2 + 2 app_A(x1,x2) = x2 nil_A() = 0 add_A(x1,x2) = x2 reverse_A(x1) = x1 shuffle_A(x1) = x1 + 1 concat_A(x1,x2) = x1 + x2 + 1 leaf_A() = 1 less_leaves_A(x1,x2) = x1 + x2 false_A() = 0 true_A() = 0 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: leaf > false > true > s > rand > concat > less_leaves > nil > reverse > shuffle > app > add > |0| > minus > quot > concat# > cons argument filter: pi(concat#) = [1, 2] pi(cons) = 1 pi(minus) = [] pi(|0|) = [] pi(s) = [] pi(quot) = 2 pi(app) = [2] pi(nil) = [] pi(add) = [] pi(reverse) = [1] pi(shuffle) = [] pi(concat) = 1 pi(leaf) = [] pi(less_leaves) = [1, 2] pi(false) = [] pi(true) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.