YES We show the termination of the relative TRS R/S: R: f(|0|()) -> true() f(|1|()) -> false() f(s(x)) -> f(x) if(true(),s(x),s(y)) -> s(x) if(false(),s(x),s(y)) -> s(y) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(x) p2: g#(x,c(y)) -> g#(x,y) p3: g#(x,c(y)) -> g#(x,if(f(x),c(g(s(x),y)),c(y))) p4: g#(x,c(y)) -> if#(f(x),c(g(s(x),y)),c(y)) p5: g#(x,c(y)) -> f#(x) p6: g#(x,c(y)) -> g#(s(x),y) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),s(x),s(y)) -> s(x) r5: if(false(),s(x),s(y)) -> s(y) r6: g(x,c(y)) -> c(g(x,y)) r7: g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p2, p6} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: g#(x,c(y)) -> g#(s(x),y) p2: g#(x,c(y)) -> g#(x,y) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),s(x),s(y)) -> s(x) r5: if(false(),s(x),s(y)) -> s(y) r6: g(x,c(y)) -> c(g(x,y)) r7: g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1,x2) = x2 c_A(x1) = x1 s_A(x1) = 0 f_A(x1) = 1 |0|_A() = 0 true_A() = 0 |1|_A() = 0 false_A() = 0 if_A(x1,x2,x3) = 0 g_A(x1,x2) = x2 + 1 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: rand > g > c > if > false > |1| > true > |0| > g# > s > f argument filter: pi(g#) = [2] pi(c) = [1] pi(s) = [] pi(f) = [] pi(|0|) = [] pi(true) = [] pi(|1|) = [] pi(false) = [] pi(if) = [] pi(g) = [2] pi(rand) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> f#(x) and R consists of: r1: f(|0|()) -> true() r2: f(|1|()) -> false() r3: f(s(x)) -> f(x) r4: if(true(),s(x),s(y)) -> s(x) r5: if(false(),s(x),s(y)) -> s(y) r6: g(x,c(y)) -> c(g(x,y)) r7: g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 s_A(x1) = x1 f_A(x1) = x1 + 1 |0|_A() = 1 true_A() = 1 |1|_A() = 1 false_A() = 1 if_A(x1,x2,x3) = x1 + x2 + x3 g_A(x1,x2) = 2 c_A(x1) = 1 rand_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: rand > if > f > c > g > false > |1| > s > true > |0| > f# argument filter: pi(f#) = 1 pi(s) = [1] pi(f) = [1] pi(|0|) = [] pi(true) = [] pi(|1|) = [] pi(false) = [] pi(if) = [1, 2, 3] pi(g) = [] pi(c) = [] pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.