YES We show the termination of the relative TRS R/S: R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(|0|(),y) -> |0|() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) if_minus(true(),s(x),y) -> |0|() if_minus(false(),s(x),y) -> s(minus(x,y)) gcd(|0|(),y) -> y gcd(s(x),|0|()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) p3: minus#(s(x),y) -> le#(s(x),y) p4: if_minus#(false(),s(x),y) -> minus#(x,y) p5: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p6: gcd#(s(x),s(y)) -> le#(y,x) p7: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) p8: if_gcd#(true(),s(x),s(y)) -> minus#(x,y) p9: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p10: if_gcd#(false(),s(x),s(y)) -> minus#(y,x) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: gcd(|0|(),y) -> y r9: gcd(s(x),|0|()) -> s(x) r10: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r11: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r12: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p5, p7, p9} {p2, p4} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p3: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: gcd(|0|(),y) -> y r9: gcd(s(x),|0|()) -> s(x) r10: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r11: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r12: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: if_gcd#_A(x1,x2,x3) = x2 + x3 false_A() = 1 s_A(x1) = x1 gcd#_A(x1,x2) = x1 + x2 minus_A(x1,x2) = x1 le_A(x1,x2) = x2 + 2 true_A() = 1 |0|_A() = 0 if_minus_A(x1,x2,x3) = x2 gcd_A(x1,x2) = x1 + x2 + 1 if_gcd_A(x1,x2,x3) = x2 + x3 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: if_gcd#_A(x1,x2,x3) = x2 + x3 false_A() = 3 s_A(x1) = x1 + 3 gcd#_A(x1,x2) = x1 + x2 minus_A(x1,x2) = x1 + 1 le_A(x1,x2) = x2 + 1 true_A() = 2 |0|_A() = 1 if_minus_A(x1,x2,x3) = x2 + 1 gcd_A(x1,x2) = x1 + x2 + 1 if_gcd_A(x1,x2,x3) = x2 + x3 rand_A(x1) = 0 The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: gcd(|0|(),y) -> y r9: gcd(s(x),|0|()) -> s(x) r10: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r11: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r12: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minus#(false(),s(x),y) -> minus#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: gcd(|0|(),y) -> y r9: gcd(s(x),|0|()) -> s(x) r10: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r11: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r12: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: if_minus#_A(x1,x2,x3) = x2 false_A() = 1 s_A(x1) = x1 minus#_A(x1,x2) = x1 le_A(x1,x2) = x2 + 2 |0|_A() = 0 true_A() = 1 minus_A(x1,x2) = x1 if_minus_A(x1,x2,x3) = x2 gcd_A(x1,x2) = x1 + x2 + 1 if_gcd_A(x1,x2,x3) = x2 + x3 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: if_minus#_A(x1,x2,x3) = x2 false_A() = 4 s_A(x1) = x1 + 3 minus#_A(x1,x2) = x1 + 1 le_A(x1,x2) = x2 + 2 |0|_A() = 1 true_A() = 1 minus_A(x1,x2) = x1 + 1 if_minus_A(x1,x2,x3) = x2 + 1 gcd_A(x1,x2) = x1 + x2 + 1 if_gcd_A(x1,x2,x3) = x2 + x3 rand_A(x1) = 0 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: gcd(|0|(),y) -> y r9: gcd(s(x),|0|()) -> s(x) r10: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r11: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r12: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = x2 s_A(x1) = x1 le_A(x1,x2) = x2 + 2 |0|_A() = 0 true_A() = 1 false_A() = 1 minus_A(x1,x2) = x1 if_minus_A(x1,x2,x3) = x2 gcd_A(x1,x2) = x1 + x2 + 1 if_gcd_A(x1,x2,x3) = x2 + x3 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = x2 s_A(x1) = x1 + 1 le_A(x1,x2) = x2 + 1 |0|_A() = 1 true_A() = 2 false_A() = 3 minus_A(x1,x2) = x1 + 1 if_minus_A(x1,x2,x3) = x2 + 1 gcd_A(x1,x2) = 2 if_gcd_A(x1,x2,x3) = 2 rand_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.