YES We show the termination of the relative TRS R/S: R: g(x,y) -> x g(x,y) -> y f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3) = x3 |0|_A() = 0 |1|_A() = 1 s_A(x1) = x1 g_A(x1,x2) = x1 + x2 + 1 f_A(x1,x2,x3) = x3 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3) = x3 |0|_A() = 1 |1|_A() = 1 s_A(x1) = x1 + 1 g_A(x1,x2) = 0 f_A(x1,x2,x3) = x3 rand_A(x1) = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs)