YES We show the termination of the relative TRS R/S: R: f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r3: rand(x) -> x r4: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r3: rand(x) -> x r4: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3) = x3 |0|_A() = 1 |1|_A() = 1 s_A(x1) = x1 f_A(x1,x2,x3) = x3 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2,x3) = x3 |0|_A() = 1 |1|_A() = 1 s_A(x1) = x1 + 1 f_A(x1,x2,x3) = x3 + 1 rand_A(x1) = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r3: rand(x) -> x r4: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs)