YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: plus#(s(x),y) -> plus#(x,y) p5: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) p6: minus#(minus(x,y),z) -> plus#(y,z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p2} {p1, p5} {p4} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2) = x1 + x2 s_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 plus_A(x1,x2) = x1 + 1 rand_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 minus_A(x1,x2) = x1 + x2 + 2 plus_A(x1,x2) = x1 + x2 + 1 |0|_A() = 1 quot_A(x1,x2) = x2 + 2 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = 0 s_A(x1) = 1 minus_A(x1,x2) = 1 plus_A(x1,x2) = x2 + 2 |0|_A() = 3 quot_A(x1,x2) = x2 + 1 rand_A(x1) = 0 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = x1 s_A(x1) = x1 + 1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 rand_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 rand_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 minus_A(x1,x2) = x1 |0|_A() = 1 quot_A(x1,x2) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 rand_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.